
Network Design for Binary Networked Public Goods Games

May 22, 2022

Abstract

Binary Networked Public Goods (BNPG) games model scenarios where the choice of investment of
a player depends on the investment by its neighboring players. For this game theoretic model, the
problem of finding a Pure Strategy Nash Equilibrium (PSNE) has been studied in past. In this paper,
we consider the problem of Network Design for Degree Sets (NDDS) which allows network modifica-
tions to ensure certain PSNE class on the network. For polynomial time setting, Kempe et al. [KYV20]
proved NDDS to be NP-hard. We study NDDS under the lens of parameterized complexity and present
W[1]-hardness and para-NP-hardness results w.r.t the considered parameters including budget, diam-
eter, treewidth, maximum degree etc. We introduce another viewpoint of the problem in terms of
deficiency of vertices, and establish lower and upper bounds on the optimal solution size. Furthermore,
we establish W[1]-hardness and para-NP-hardness of the problem even under homogeneity constraint
(NDDSα). We then establish equivalence of NDDSα and EDGE-k-CORE problem which gives us an
FPT for NDDSα w.r.t. (treewidth, lower bound on investment degree sets) and vertex cover number.

1 Introduction

Problem Variant Parameter Result
all, general k (budget) W[1]-Complete Theorem 3

{= S, ⊇ S, > r}, general k W[1]-Complete Corollary 1
{⊇ S, > r}, concave k W[1]-Complete Theorem 4
{⊇ S, > r}, sigmoid k W[1]-Complete Corollary 2

> r, {concave, convex, sigmoid} r+ k W[1]-Complete Theorem 5
> r, convex k+ r+ α W[1]-Hard Theorem 8
> r, sigmoid r+ k para-NP-hard Section 5

{> r, ⊇ S}, general |I| W[2]-Hard Observation 2
{> r, ⊇ S}, general n− |I| W[2]-Hard Observation 2
{> r, ⊇ S}, general treewidth W[1]-Hard Observation 3
{> r, ⊇ S}, general ∆ para-NP-hard Observation 4
{> r, ⊇ S}, general (δ,nU) para-NP-hard Observation 6, 5

{−any−,−any−}, -any- k nO(k) XP Theorem 10

Homogeneous Variant: NDDSα

> r, {convex, sigmoid, general} k+ r+ α W[1]-Hard Corollary 3
> r, {convex, sigmoid, general} r+ k para-NP-hard Corollary 4

c =
⌈
1
2

∑
v∈V(H)

df(v)
⌉

k ∈ [c, 2c] Theorem 11

NDDSα(convex, > r) 6FPT EDGE-k-CORE Theorem 12
Forests: > r, convex α O(αn2) Observation 8

> r, convex vc FPT Observation 9
> r, convex tw+ α FPT Observation 10

Table 1: Summary of results.

1

We face numerous real world scenarios focused toward a public good such as contributing for a
private colony road construction, vaccination, sharing a common property to be used by public in general.
In such scenarios, the amount of investment by individuals depends on how much their neighbors are
investing, but in turn, the overall profits are shared with the entire public in general. Thus it is apt to
question how to figure out the balance between individual investment and the public good. This can be
achieved by modeling the above problem as a game theoretical question of Networked Public Goods (NPG)
games. This can be done by setting the utility function of a player to be dependent on the neighbors of
the player in the graph representation of the network as well as his individual investment. The book on
Microeconomic Theory by Collel et al. [MCWG+95] and paper by Bramoulle et al. [BK+07] elaborate on
the concept of public good games in a much more detailed manner. NPG games can model many other
real world scenarios, as discussed in the review article of economics and statistics by PA Samuelson in
1954 [Sam54].

Even if we ease the problem to just deciding whether a player invests or not, neglecting the amount
of investment by it, the resulting problem still poses a significant algorithmic hurdle. However, it carries
innumerable practical implications such as estimating a turnout (or even influencing) a vaccination drive
or voting-spree where essentially a major influence on the individual is his neighbors. Such a variant
where players are allowed a binary choice between investing or not investing in an NPG game is termed
as Binary Networked Public Goods (BNPG) games as defined by Galeotti in 2010 [GGJ+10]. The problem
has been studied algorithmically in both polynomial and parameterized settings. Various practical studies
employ modeling BNPG games on real world scenarios. One of the most recent of which is a series of
two concurrent reports by Buchwald [Buc20, Won20] highlighting the impact of communities on mask-
wearing practices by individuals.

To a policymaker, BNPG games offers no power in their hands. It may happen that only a few diligent
players invest, whereas the rest just abstain from investing, benefiting from the collective investment
from the former group of diligent investors. This Bystander Effect might not be sustainable over the
long term. This motivates us to devise a central mechanism to introduce modifications in the network
(constrained by a budget) by building or breaking connections. In fact, game theoretical models [Rou07]
such as auctions or mechanism designs often employ such incentivization to the manipulate the outputs.
Through such manipulations, the central mechanism can force a particular number or set of individuals
to invest for public good. This problem is formally termed as Network Design for Degree Sets (NDDS),
first defined and studied algorithmically by Kempe et al. [KYV20]. The problem finds its practical
application in modeling security applications similar to the study Hota et al. [HS16], which characterizes
the expected risk of a node to be attacked by the amount of (1) its own security strength (investment),
(2) and the strength (investment) of its neighbors. In fact, the notion of network modifications finds
its applications in a wide range of practical implications such as maximizing the spread of cascades
[SDE+12], manipulating opinion diffusion in social networks [BE17], election control in social networks
[CFG20], and many more.

Our work considers the problem of NDDS in parameterized complexity setting. From the work by
Kempe et al, we know that the problem is NP-hard most of the variants. The input consists of an edge-
weighted network, individual utility functions, and a budget for modifications. The goal is to decide
whether there exists a sequence of edge editions (additions or deletions); under the constraint of the
given budget; such that the final modified network has a PSNE w.r.t to the required class (e.g. of classes
include all players investing, or a certain input set S of players invests or at least r players invest). It
should be pointed out that, although any player’s utility is always non-decreasing w.r.t the increase in the
number of neighbors, the functions capturing this non-decreasing behavior may vary. Thus we classify
the problem into variants further depending on the type of this function (e.g., convex, concave, sigmoid,
or general function).

We present Parameterized Hardness results by performing non-trivial reductions to already W-hard
problems (such as r-REGULAR CLIQUE, r-REGULAR SUBGRAPH, EDGE-k-CORE) w.r.t parameters including
(not exhaustively) the budget, diameter, treewidth and maximum degree of the input graph. We also
design an XP-algorithm w.r.t. the budget for every variant of the problem. We establish the equivalence
of the homogenous version of NDDS (NDDSα) and EDGE-k-CORE problem. This gives us an FPT
for NDDSα w.r.t. (treewidth, lower bound on investment degree sets) and vertex cover number. An
overview of our results is depicted in Table 1.

2

2 Prior Work

The problems on network design have been discussed in various Graph Theory and Algorithm Design
books [Kle07, IKMW07, Mor00] over time. Networked Public Goods (NPG) games have been defined in
studies including [GGJ+10] [MCWG+95] [LKGM18]. The first algorithmic study on BNPG games was
conducted by Yu et al. [YZBV20] in early 2020. They focused on polynomial complexity of the decision
version of the problem and established NP-completeness for the same. Building upon this, Maiti et al.
[MD20] extended the results of deciding on PSNE of BNPG to parameterized complexity. However, the
works discussed so far did not consider any network modifications on the input graph. Moreover, the
later models cannot generalize to our problem since they do not consider the constraint of PSNE classes.

Galeotti et al. [GGJ+10] studied the effects of network modifications on the welfare of NPG games
from an economic perspective. Bramouelle [BK+07], [BKD14] presented one of the initial studies con-
sidering Network Modifications on NPG games, studying the variants with specific utility functions, i.e.,
concave, convex and a combination of both, i.e., sigmoid function. They also established a link between
the PSNE and minimum eigenvalue of the input graph’s graph-adjacency. However, not until very re-
cently, in 2020, Kempe et al. [KYV20] defined and initiated a study on algorithmic effects of Network
Modifications restricted to edge editions on BNPG games. Based on the class and type of utility functions,
Kempe established polynomial time tractability of a few problem variants using a reduction of a perfect
matching problem. The author also proved NP-Completeness for the rest of the other variants, thereby
inspiring our work on the same in parameterized complexity.

Deviating from the problem of finding PSNE, there are quite a few possible variants of network
modifications on networks. Whereas our approach to network design focuses more on equilibria in
games played over the network, other problems in network design more eccentric around optimizing
path, flow, or diffusion properties in the network have been worked upon in the past. Notable works
are on Maximizing the Spread of Cascades by Sheldon et al. [SDE+12], Manipulating Opinion Diffusion
in social networks by Bredereck et al. [BE17], Election Control in social networks [CFG20]. Another
problem along a similar line is by Sless et al. [SHKW14] ,which works around forming coalitions and
facilitating relationships for completing tasks in social networks.

3 Our Contribution

We study the parameterized complexity of the NDDS problem (defined in detail in Section 4.1) with
respect to various parameters such as the budget, diameter, treewidth and maximum degree of the
input graph. In particular, we first consider the input parameter, i.e., the budget (k) of the problem
and establish W[1]-hardness for the general, concave, convex and sigmoid variants (as defined later in
Section 4.1) on the class [> r] of PSNE. We then introduce an additional parameter as the input value
r. With respect to the parameter k + r, we again establish W[1]-hardness for the considered variants.
We then define a structural parameter of α (defined Section 4.2) intuitively dependent on the greed or
deficit in a player’s neighbors to make him/her invest. With an (FPT) reduction from already W[1]-hard
problem of EDGE-k-CORE to our problem, we establish that the problem is hard even w.r.t k+ r+ α. For
the sigmoid variant, we further make the problem intractable in parameterized complexity establishing
para-NP-hardness w.r.t parameter r. By a reduction from results of Maiti et al. for BNPG (without
modifications), we establish W[1]-hardness considering the number of players investing (|I|), n − |I|,
treewidth, maximum degree (∆) and diameter of the input graph, number of distinct utility functions
(δ, nU).

Following the W[1]-hardness, we devise XP algorithm w.r.t k for all variants of the problem. Following
this, we consider the homogeneous variant of the problem. We first establish the notion of deficiency in
the input graph or its subgraphs, formulating the problem statement of NDDSα(convex, > r∗) in a
fresh perspective. Then we establish the bounds on number of edges to be added corresponding to the
optimal solution for general graphs. We then establish a reduction to EDGE-k-CORE. This essentially,
results in strictly bounding the number of edges in the optimal solution for forests. Morever, using the
same reduction, we extend the results of EDGE-k-CORE to obtain an FPT for NDDSα(convex, > r∗)
w.r.t parameters (tw + α). We also obtain an FPT for NDDSα(convex, > r∗) w.r.t. vc as parameter,
and complement this result by ruling out the existence of a polynomial kernel using the reduction to
EDGE-k-CORE. We summarize our results in Table 1.

3

4 Preliminaries

Our work explores the considered problem using a set of tools in Algorithms called Parameterized Com-
plexity. It is a relatively new field in the Analysis of Algorithms and has already rendered FPT algorithms
for most of the hard problems including NP-hard as well as APX-Hard problems. Thus we define the
necessary terminology required for our work.

Definition 1 (Parameterized Problem). [CFK+15] Givev Σ as a fixed, finite alphabet, a Parameterized
problem is a language L ⊆ Σ∗ × N, . k is called the parameter of the problem, for any given instance,
(x,k) ∈ Σ∗ ×N.

In Parameterized versions of the problems, k is simply a key complementary measure that captures
some aspect of the input instance. It might be a number describing how “structured” the input instance is
or the size of the solution sought after. This also prompts us to think of possible algorithms and running
times for the Parameterized Problems. We first define algorithms with running time f(k)nO(1), termed
as fixed-parameter algorithms, or FPT algorithms. Formally:

Definition 2 (Fixed Parameter Tractable(FPT) algorithms). [CFK+15] Given a parameterized problem
L ⊂ Σ∗ ×N is called fixed parameter tractable (FPT) if there exists:

1. an algorithm A (called a fixed parameter algorithm),

2. a computable function f : N→ N,

3. and a constant c

such that the algorithm A correctly decides whether (x,k) ∈ L in time bounded by f(k).|(x,k)|c for any given
(x,k) ∈ Σ∗ ×N. FPT denotes the complexity class containing all fixed-parameter tractable problems.

Typically the goal in Parameterized algorithmics is to design FPT algorithms, trying to make both the
f(k) factor and the constant c, which is the power of n in running time; in the bound on the running
time as small as possible. We further define another complexity with the power of n as a function of the
input parameter as well as follows:

Definition 3 (Slice-wise polynomial (XP) algorithms). [CFK+15] A Parameterized problem L ⊂ Σ∗ ×N
is called slice-wise polynomial (XP) if:

1. there exists an algorithm A,

2. and two computable function f,g : N→ N,

such that algorithm A correctly decides whether (x,k) ∈ L in time bounded by f(k).|(x,k)|g(k) for any given
(x,k) ∈ Σ∗ ×N. XP denotes the complexity class containing all slice-wise polynomial problems.

Fixed-Parameter Tractable algorithms can be compared to the less efficient Slice-wise Polynomial
algorithms. The running time for XP is of the form f(k)ng(k), for some computable functions f, g
whereas FPT offers a special case of XP with g(k) = O(1).

Another tool employed for designing FPT algorithms is Bounded search trees or simply branching. It
provides us with one of the simplest and most commonly used techniques in Parameterized complexity
that is widely used. A Bounded Search Tree builds a feasible solution to the problem by making a
sequence of decisions on its branching at the considered node, deciding whether to include some vertex
or edge into the solution or not. Thus it can be considered as a search tree, which is traversed by the
algorithm until we reach an optimal solution (maybe a feasible solution) at at least one of the leaf nodes
of the bounded search tree. Backtracking this tree in a bottom-up manner from the concerned leaf to the
root can give us the solution set corresponding to the path. The running time is limited by (1) limiting
the individual running time of each node of the tree (2) by bounding the number of branches at the
nodes (3) by limiting the depth of the tree.

Now we define the para-NP-hardness, which we utilize for our proofs. The notion of para-
NP-hardness states that the problem is NP-hard for a given constant value or “piece” of parameter. For
instance, graph coloring is para-NP-hard; considering the parameter as the number of colors allowed; as
it is NP-hard for three colors (3-Colorabity of graphs is a famous result itself).

4

Definition 4 (para-NP). [FG06] Para-NP is the class of parameterized problems that a non-deterministic
algorithm can solve in time f(k).|x|O(1) where f is a computable function.

Henceforth, given an input parameter, if the considered problem is NP-hard for a constant assignment
to the parameter, then it is para-NP-hard. Another equivalent of P 6= NP conjecture in parameterized
complexity is FPT 6= para-NP, and it has been proven that FPT = para-NP iff P = NP. This again
extends to the fact that para-NP-hard problems cannot belong to XP unless until the conjecture P 6= NP
fails. For proving the hardness of problems in parameterized complexity, we first need to explain the
notion of reduction in the same. It is given as follows:

Definition 5 (Parameterized reduction). [CFK+15] Given two parameterized problems A, B ⊆ Σ∗ ×N. A
reduction from A to B is a parameterized reduction, is defined as an oracle which takes in an instance I(x,k)
of A and returns an instance I ′(x ′,k ′) of B such that :

1. k ′ 6 g(k) where g(.) is a computable function

2. the oracle runs in FPT time, i.e., it runs in time f(k).|x|O(1), where f(.) is a computable function.

3. I(x,k) is a Yes-instance of A iff I ′(x ′, k ′) is a Yes-instance of B,

Any such reduction idenoted by A 6param B or simply as A 6 B

It is followed by the fact that :

Theorem 1. [CFK+15, Theorem 13.2, 13.3] Given parameterized problems A, B, C ⊆ Σ∗ × N. If
A 6param B and B is FPT, then A is FPT as well. Morever, this property follows transitivity, i.e., if
A 6param B and B 6param C, then A 6param C.

We borrow the notion of W-Hierarchy from [CFK+15]. Not to extend the explanations more, we
refer the reader to [CFK+15] for the basic notion of Boolean Circuits, the weft of a circuit and the definition
of the Weighted Circuit Satisfiability (WCS) problem. WCS[C] is defined as the restriction of the problem
where the input circuit C ofWCS problem belongs to the given class of circuits C. The maximum number
of large nodes on a path from an input node to the output node of the circuit is defined as weft of the
circuit. The class of circuits with weft at most t and depth at most d is denoted as Ct,d.

Definition 6 (W-hierarchy). [CFK+15, Definition 13.16] For t > 1, given a parameterized problem P, it
is said to belong to class W[t] if there is a parameterized reduction from P to WCS[Ct,d] for some d > 1.
Furthermore, if every problem in W[t] can be reduced to P implies that P is W[t]-hard.

For instance, Weighted t-normalized Satisfiability, Monotone t-normalized Satisfiability, Monotone (t
+ 1)-normalized Satisfiability are W[t] − Complete, for every even t > 2.

We greatly exploit the graph theoretical interpretation of the problem for proving the results. Thus
we borrow basic graph theory terminologies. Formally, a directed graph G is a tuple (V,E) where E ⊆
{(x,y) : x,y ∈ V, x 6= y}. For a graph G, we denote its set of vertices by V[G], its set of edges by E[G],
the number of vertices by n, and the number of edges by m. Given a graph G = (V,E), a sub-graph
H = (V′,E′) is a graph such that (i) V′ ⊆ V, (ii) E′ ⊆ E, and (iii) for every (x,y) ∈ E′, we have
x,y ∈ V′. A sub-graph H of a graph G is called a spanning sub-graph if V[H] = V[G] and induced subgraph
if E[H] = {(x,y) ∈ E[G] : x,y ∈ V[H]}. Given an induced path P of a graph, we define an end vertex as a
vertex with 0 outdegree in P and start vertex as a vertex with 0 indegree in P.

Almost all the parameters considered for solving the problem are self-explanatory, except the parame-
ter of treewidth. The treewidth of a graph is one of the most immensely employed tools in parameterized
algorithms nowadays. Intuitively, treewidth measures how close the given graph is to a tree. Smaller
treewidth suggests the existence of a structural decomposition of the graph into pieces of bounded size
connected in a tree-like fashion, thereby allowing one to analyze the problem with typical tree algorithms
such as Dynamic Programming. A tree has a treewidth of 1, whereas a clique or a complete graph has
treewidth of n − 1 and for a complete bipartite graph Km,n treewidth is min{m,n} − 1. Formally we
define a tree decomposition and subsequently the treewidth of a graph as follows:

Definition 7 (Tree-Decomposition, Treewidth). [CFK+15] Tree decomposition (may not be unique) of a
graph G is a pair T = (T , {Xt}t∈V(T)), where T is a tree whose every node t is assigned a vertex subset
Xt ⊆ V(G), called a bag, such that the following three conditions hold:

5

1. ∪t∈V(T)Xt = V(G). Ensuring that each vertex of G is in some bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u and v.

3. For every u ∈ V(G), the set Tu = {t ∈ V(T) : u ∈ Xt}, i.e., the set of nodes whose corresponding bags
contain u, induces a connected subtree of T .

Treewidth of G is defined as the minimum of all the widths of all possible tree decompositions T =
(T , {Xt}t∈V(T)) where the width of T refers to the maximum size bag from all the bags minus one, i.e.,
maxt∈V(T)|Xt|− 1.

Using the concept of treewidth, FPT algorithms have been developed for otherwise hard problems,
including Weighted Independent Set, Dominating Set, Steiner Tree, Subgraph Isomorphism etc.

4.1 Problem Definition

We now formally define our problem, which is adapted from Kempe et al. [KYV20]. We begin with
defining a BNPG game. In a binary networked public goods (BNPG) game, we are given the following as
a part of the input instance:

1. An undirected, simple graph G(V,E), where V[G] represents n players and E[G] represents m
dependencies between pairs of players;

2. A binary strategy space {0, 1} for each player i where an individual strategy of 1 means investing
by the corresponding player, whereas a strategy of 0 implies that the corresponding player does
not invest. Let us denote by xi the strategy played by ith player and the joint pure (we do not
employ the game theoretic concept of mixed strategies for this variant) profile of all players as
x = (x1, ..., xn).

3. Utility function Ui(x) of each player is defined as follows:

Ui(x) = Ui(xi,n
x
i) = gi(xi + n

x
i) − cixi

where :

nxi = {j | (j, i) ∈ E[G] and xj = 1}

gi() := non-negative, non-decreasing function

We may interchangeably use the terms strategy and action at times.

Definition 8 (PSNE of BNPG). [KYV20] A Pure Strategy Nash Equilibrium (PSNE) of a given BNPG game
is defined a joint pure strategy profile x ∈ {0, 1}n such that Ui(xi,nxi) > Ui(1 − xi,n

x
i), or Ui(xi,nxi) =

Ui(1−xi,n
x
i) and xi = 1, for every player i. Thereby breaking ties in favor of investing whenever applicable.

The uniqueness of PSNE for a game may not hold, implying that a BNPG game may not have a
single unique joint pure strategy acting as a PSNE. We also define classes of these multiple PSNE profiles,
depending on the players investing in a given profile. Particularly, we perform edge editions to the input
graph such that out of all possible PSNE profiles, there is at least one profile that lies in the given class
X (the class is given as a part of input instance). For notational convenience, we define X as a set of
strategy vectors x ∈ {0, 1}n and Xb = {i | xi = b} ∀b ∈ {0, 1} and use them interchangeably as per the
context. We classify a PSNE into the following classes (note that these classes need not be disjoint of
each other):

B all: Every player invests, i.e., X = {{1, 2, . . . ,n}}.

B = S: Exactly a given set S of players invests (and the other players do not), i.e., X1 = {S}. All
players investing is the special case S = {1, ...,n}.

B ⊇ S: At least the set S of players invests; other players may also invest. Here, X1 = {T | T ⊇ S}.

B > r: At least r players invest. Here, X1 = {T | |T | > r}

6

Definition 9 (Network Design for BNPG). [KYV20] Given a BNPG instance G(V,E) , edge costs {γe∈(n2)} ,
desired PSNE class X, and budget k, find an edge set S with

∑
e∈S	E γe 6 k such that the BNPG game on

G ′(V,E ′ = S	 E) has at least one PSNE in X.

Now, we propose another classification of the problem of finding PSNE of BNPG based on the varia-
tions in properties of gi (which is a part of Ui). We partition it into four types (1)concave, (2)convex,
(3)sigmoid, or (4) General, for all players i ∈ [n], where the names of classes are self-explanatory for the
types of functions contained in them.

We adopt a crucial observation from Kempe’s paper, which helps characterize the information carried
by the utility function of ith player. We defined Investment Degree Set for player i, denoted by Di, to be
the set of numbers of neighbors of player i that are investing and that would force player i to invest as
well. From a result by Kempe, the structure of Di links directly to the type of function gi(.) as follows:

Theorem 2. [KYV20, Lemma 2.3] For every non-decreasing function gi : [0,n−1]→ R+ and cost ci , there
exists a unique set Di ⊆ {0, 1, ...,n − 1} such that xi = 1 is a best response to nxi (or simply ni) if and only
if ni ∈ Di . Furthermore,

B If gi is concave, then Di is a downward-closed interval.

B If gi is convex, then Di is an upward-closed interval.

B If gi is sigmoid, then Di is an interval.

The converse of these statements also holds.

We now define the problem of finding PSNE belonging to a particular class X in terms of investment
degree sets as follows:

Definition 10 (Network Design for Degree Sets (NDDS)). [KYV20, Definition 2.4] Given a graph G(V,E),
investment degree setsDi for all players i consistent with a function property P (such as convexity, concavity,
sigmoid, or general), edge costs {γe∈(nx)

}, desired PSNE class X, and budget k, decide whether there exists
an edge set S with

∑
e∈E	S γe 6 k such that there exists a set I ∈ X of investing players such that in the

modified graph G ′(V,E ′ = E	 S)

|NG
′

i ∩ I| ∈ Di ∀i ∈ I;
|NG

′

i ∩ I| /∈ Di ∀i /∈ I.

We further define the homogeneous variant of the problem. In the general variant, every player i ∈
V[G] has a different investment degree set Di and hence we call this version of the game a heterogeneous
BNPG game. If not mentioned otherwise, by BNPG game, we refer to a heterogeneous BNPG game. On
contrary, the homogeneous variant imposes an additional condition that the maximum element of each of
the investment degree sets for all players should be same, i.e., ∀i ∈ V[G], α = αi = min{z | s.t. z ∈ Di}.
We will denote the homogeneous variant of the problem as NDDSα.

4.2 Parameters Used

We study several natural and structural parameters for analyzing the problem. Most of them are self-
explanatory and follow directly from basic graph theoretic definition, whereas we did define a few new
parameters to analyze the input instance intricately. The list of parameters considered for our analysis is
depicted in Table 2.

5 Hardness Results

We begin with the natural input parameter, i.e., the budget (k) of the problem and establish W[1]-
hardness for the all the variants on the class [> r] of PSNE. With the further aim to ease the problem,
we introduce an additional parameter as the input value r. With respect to k + r parameter, we again
establish W[1]-hardness for all the variants. With an FPT reduction from already W[1]-hard problem

7

Notation Parameter
all, general k (budget)

k natural parameter of input budget
r r from problems NDDS(P, > r)
α Minimum of lower bounds from

all Dv∈V[G]. ∀v ∈ V[G],
Dv = {αv, ...,n− 1},αv ∈ [n− 1].
α = minv∈V[G]{min(z | z ∈ Dv)}

δ diameter of input graph
nU number of distinct utility functions
tw treewidth
D maxv∈V[G]|Dv|

∆ maximum degree of input graph
vc vertex cover number of the input graph

Table 2: Parameters Used

of EDGE-k-CORE to our problem, we establish that the problem is hard even w.r.t k + r + α. For the
sigmoid variant, we further prove the problem intractable in parameterized complexity by establishing
para-NP-hardness w.r.t parameter r. By a reduction from prior work on BNPG (without modifications),
we establish W-Hardness considering the number of players investing (|I|), n − |I|, treewidth, maximum
degree (∆) and diameter of the input graph, the number of distinct utility functions (δ, nU).

We prove the hardness of NDDS(general, all) by a reduction from r-REGULAR CLIQUE problem, which
is already W[1]-complete.

Theorem 3. The problem of NDDS(general, all) is W[1]-complete w.r.t the parameter k, i.e., the budget. In
fact, the W[1]-completeness is applicable even when the input graph is unweighted.

Proof. Consider an instance I = (G(V,E),k) of r-REGULAR CLIQUE problem where G is r-regular graph
and the goal is to decide whether there exists a k-clique as a sub-graph of G. We construct an instance
I ′ = (G ′(V ′,E ′),k ′) of NDDS(general, all) as follows:

B V ′[G ′] = V[G] ∪ Z, where Z = {z1, ..., zk};

B E ′[G ′] = E[G] ∪ {(vi, zj) | ∀vi ∈ V[G], j ∈ [k]};

B γe = 1, ∀e ∈ E ′[G ′];

B Dvi = {r− k− 1, r+ k}, ∀vi ∈ V[G];

B Dzj = {n− k}, ∀j ∈ [k];

B k ′ = k2 +
(
k
2

)
.

This completes the construction of reduced instance. We establish that I is a Yes instance of r-REGULAR

CLIQUE iff I ′ is a Yes instance of NDDS(general, all). In other words, there exists a k-clique as sub-graph
of G iff there exists a network modification of budget k ′ such that the modified graph G ′′ has a PSNE
where all players invest i.e. dG

′′
(u) ∈ Du, ∀u ∈ V ′[G ′].

For forward direction the proof is relatively easier. Let Kk = {u1, ...,uk} be the vertices of k-clique in
G. Consider the instance G ′(V ′,E ′) constructed by reduction from G. We specify the set of edges to be
edited (in this case considering only delete operation will suffice) as Emod = Edel = {(ui,uj) | ∀i, j ∈
[k]} ∪ {(ui, zj) | ∀i, j ∈ [k]}. The cost of edges modified (deleted) c(Edel) = |Edel| =

(
k
2

)
+ k2 = k ′ (as all

edge costs are 1 i.e. graph is unweighted). Degrees in the modified graph G ′′ are as follows :

B dG
′′
(v) = r+ k, ∀v ∈ V ′[G ′′] \ Kk;

B dG
′′
(ui) = r− k+ 1, ∀i ∈ [k];

B dG
′′
(zj) = n− k, ∀j ∈ [k].

8

Since degrees of all vertices in modified graph lie in their respective investment degree sets, we have a
PSNE in which all the players invest. Thus the reduced instance is a Yes instance to NDDS(general, all).
This completes the proof in forward direction.

For reverse direction, consider I ′ = (G ′(V ′,E ′),k ′) as a Yes instance to NDDS(general, all). Let
Emod be the set of edges to be modified to obtain solution graph G ′′. Consider Ebipartdel ⊆ Emod as
the set of edges deleted with one end incident in Z and other end incident on vertex in V[G]. Clearly
|Ebipartdel | > k2| since the initial degree of each vertex of Z in G ′ is dG

′
(zi) = n ∀i ∈ [k], whereas the final

degree of each vertex of Z in modified graph G ′′ is dG
′′
(zi) = n − k, ∀i ∈ [k], which accounts for at

least nk− (n− k)k = k2 deletions. Based on the final degree; dG
′′
() of vertices from V[G], we partition

it into two parts Vc∈{r−k+1, r+k}. The other incident points of these edges in Ebipartdel in V[G] can be in
one of Vc∈{r−k+1, r+k}. This partitions Ebipartdel into Ei, ∀i ∈ {r− k− 1, r+ k} depending on the degree of
vertex from V[G] in G ′′. For every 2 edges from Er+k, we need to add at least one edge within points in
Vr+k i.e. on average basis every edge from Er+k requires compensation with at least 1

2 edges additions.
In case of Er−k+1, minimum average compensation occurs only when Er+k = φ and Er−k+1 contains k2

edges incident on exactly k vertices from V[G]; say Kk = {u1, . . . ,uk}; and Kk forms a clique. Number
of edge deletions required in this case are

(
k
2

)
. This implies the minimum possible edge edition budget

sums up to
(
k
2

)
+ k2 = k ′. This makes it the only possible case for I ′ to be a Yes instance. Thus, we get

that given I ′ as a Yes instance, the original graph G contains a k-clique. This concludes the proof.

By setting S = V[G] (resp. r = n), the Theorem 3 can be extended to establish W[1]-completeness of
NDDS(general, =S), NDDS(general, ⊇ S) (resp. NDDS(general, > r) with respect to the parameter k.
This can be suummarized as the following corollary:

Corollary 1. For all X ∈ {all, = S, ⊇ S, > r), the problem of NDDS(general, X) is W[1]-completeness
w.r.t the parameter k i.e. the budget even when the input graph is unweighted.

Now we use reductions from [KYV20] to obtain the following results:

Theorem 4. NDDS(concave, X) for X ∈ {⊇ S, > r} is W[1]-complete w.r.t the parameter k.

Proof. The polynomial reduction in [KYV20] from Independent Set with the natural parameter k, pre-
serves the parameter as the parameter for the reduced NDDS instance is k ′ = k. Since Independent Set
is W[1]-hard w.r.t to the k, we get that the problem is W[1]-complete (verifying a certificate to the input
instance takes at most poly(n) time.

Trivially as per our definition, every set of all concave functions is a subset of sigmoid functions.
Thereby giving us an extension of Theorem 4 over sigmoid functions.

Corollary 2. NDDS(sigmoid, X) for X ∈ {⊇ S, > r} is W[1]-complete w.r.t the parameter k.

Another direct result that can be inferred from Polynomial reductions in [KYV20] is of W[1]-complete
w.r.t parameter r for the following problems:

Theorem 5. NDDS(P, > r) for P ∈ {concave, convex, sigmoid} is W[1]-complete w.r.t the parameter r.
Even when k = 0.

Proof. The polynomial reduction in [KYV20] from Independent Set with the natural parameter k, pre-
serves the parameter as the parameter for the reduced NDDS instance is r = k. Since Independent Set
is W[1]-hard w.r.t to the r, we get that the problem is W[1]-complete (verifying a certificate to the input
instance takes at most poly(n) time.

Since NDDS(convex, > r) is W[1]-hard by Theorem 5, one may think of involving more parameters
into the equation to obtain an FPT. From Theorem 2, we know that investment degree for a convex
function is downward closed, i.e. ∀v ∈ V[G], Dv = {αv, ...,n − 1},αv ∈ [n − 1]. We prove that the
problem when paramterized by α = minv∈V[G]αv is W[1]-hard. To be specific we prove that the problem
is W[1]-hard parameterized by k + r + α by a FPT-reduction from an already W[1]-hard problem of
EDGE-k-CORE. The problem EDGE-k-CORE is defined as below.

Definition 11 (EDGE-k-CORE). Given a simple, undirected graph G = (V,E) and integers k, α, and r,
decide if there exists a set of vertices H ⊆ V[G] such that adding at most k edge additions to G, we obtain a
graph G ′ and every v ∈ H has degG′[H][v] > α.

9

Theorem 6. [CT18, Corr. 1] EDGE-k-CORE is NP-hard for α = 3, even on planar graphs of max degree 5.

Theorem 7. [CT18, Theorem 4] EDGE-k-CORE is W[1]-hard parameterized by r+ k, for α = 3.

For the reduction, a key observation for NDDS(convex, > r) is that any optimal algorithm has no
incentive in removing any edges even if the edge deletion cost is 0 (note that the problem considers only
non-negative weights on for edges, if the weights are negative then it might not hold true).

Observation 1. For NDDS(convex, > r), any optimal solution set minimal solution set S, is a subset of(
V
2

)
\E[G] i.e. only modifications in the graph are edge additions. Furthermore, each edge from S, should be

incident to at least one vertex from final set of players investing i.e. I.

Proof. Let us assume that there is a minimal feasible solution S with a non-empty intersection with E[G],
which would mean that we are deleting a non-zero number of edges to reach to the solution. Lets call
this set as Edel. We can create another solution S ′ = S \ Edel. This is equivalent to saying that we
undo the deletion of edges, since adding back the edges to the solution graph corresponding to S, would
not drop the degree of any vertex, it would still be a feasible solution. Thus, we conclude the proof by
contradiction that S is not a minimal feasible solution. Similarly we can establish that S would have each
edge incident to at least one vertex from set of players investing finally.

Observation 1 eases down the the reduction by laying down that both the problems involve modifi-
cations only in the form of edge additions. We now present the main reduction result:

Theorem 8. NDDS(convex, > r) is W[1]-hard with respect to the parameter k + r + α, in particular the
problem is W[1]-hard w.r.t parameter k+r even when α = 3. This applies even when the graph is unweighted.

Proof. We reduce EDGE-k-CORE to our problem preserving the parameter (FPT Reduction). Consider the
input instance of EDGE-k-CORE: Simple undirected unweigthed graph G(V, E), limit on edge additions
k, mimimum required degree of subgraph H say α and minimum size of H say r. We create an instance
of NDDS(convex, > r∗) [G∗(V∗, E∗),k∗] as follows:

1. G∗ = G i.e. V∗ = V and E∗ = E;

2. Dv = {α, ..., n− 1} ∀v ∈ V∗;

3. r∗ = r

4. k∗ = k

This completes the construction of the reduction. Clearly the reduction is FPT Reduction as it pre-
serves the parameters. We claim that a there exists a solution S to EDGE-k-CORE instance is a solution to
if and only if there is a solution S∗ = S for the corresponding reduced NDDS instance.

For forward direction, assume, S is the minimal feasible solution to EDGE-k-CORE instance. The final
graph after edge modifications be G ′. Since S is feasible solution, we know that there is a set H ⊆ V[G ′]
such that adding at S to G, we obtain a graph G ′ and every v ∈ H has degG[H] > α and |H| > r. For the
NDDS instance, set solution edge set to be S∗ = S. Now the final set of players investing, say I∗, is a
superset of H i.e. I∗ ⊇ H. Since v ∈ H has degG[H] > α > αv. We can claim that all vertices from H are
investing (xv = 1). Thus we get a |I∗| > |H| > r.

For reverse direction, assume, S∗ is the minimal feasible solution to NDDS instance. From Obser-
vation 1, we know that the S∗ is disjoint from set of edges E∗. Or in simple words, S∗ corresponds to
only edge additions to the graph G∗. The final graph after edge modifications be G∗

′
. Since S∗ is fea-

sible solution, we know that there is a set I∗ ⊆ V∗, such that ∀v ∈ I∗ degG[I∗][v] ⊆ DG
∗

v . This further
implies that ∀v ∈ I∗ degG[I∗][v] > αv > α and |I∗| > r. We can construct feasible solution S = S∗ of
EDGE-k-CORE. The required subgraph satisfies the min degree constraint is H = I∗. This completes the
reduction. Since EDGE-k-CORE is W[1]-hard w.r.t k+ r even when α = 3 and the reduction directly maps
the parameters (k, r, α) to (k∗, r∗, α∗). This concludes the proof.

Corollary 3. NDDSα(convex, > r) is W[1]-hard with respect to the parameter k + r + α, in particular
the problem is W[1]-hardness w.r.t parameter k + r even when α = 3. This applies even when the graph is
unweighted.

10

Proof. The reduction from Theorem 8, can be clearly seen to be done to the homogeneous instances of
NDDS only. This extends the W[1]-hardness to NDDS(convex, > r).

We now try and look towards a more general class of functions, i.e., sigmoid functions. We prove
that the problem is W[1]-hard w.r.t the parameter r. For this, we reduce from the problem of r-REGULAR

SUBGRAPH defined as follows:

Definition 12 (r-REGULAR SUBGRAPH). Given a simple, undirected Graph G(V,E), decide whether there
exists a H ⊆ V[G], such that subgraph on H i.e. G[H], is r-regular.

The problem of r-REGULAR SUBGRAPH is para-NP-hard w.r.t parameter r, even with maximum degree
∆ = 7. Its para-NP-hardness further extends to planar graphs (even with ∆ = 4) and bipartite graphs.

We propose a reduction from r-REGULAR SUBGRAPH to NDDS(sigmoid, > r). We also consider a new
parameter D = maxv∈V[G]|Dv|. Moreover, the problem is also W[1]-hard w.r.t r, k=0.

Theorem 9. NDDS(sigmoid, > r) is para-NP-hard w.r.t parameter r+ k, even when the maximum size of
investment degree set i.e. D is 1, k=0, and the graph is unweighted.

Proof. We reduce r-REGULAR SUBGRAPH to our problem. Consider the input instance of r-REGULAR SUB-
GRAPH: Simple undirected unweigthed graph G(V, E), parameter r (required degree of regular subgraph
H). We create an instance of NDDS(sigmoid, > r∗) [G∗(V∗, E∗),k∗] as follows:

1. G∗ = G i.e. V∗ = V and E∗ = E;

2. Dv = {r} ∀v ∈ V∗;

3. r∗ = r

4. k∗ = 0

5. weight of each edge = 1.

This completes the construction of the reduction. Clearly, the reduction runs in polynomial time and
preserves the parameters. We claim that there exists a solution subgraph on H of r-REGULAR SUBGRAPH

instance if and only if there is a solution with for the corresponding reduced NDDS instance.
For forward direction, assume, H be a maximal solution to r-REGULAR SUBGRAPH instance, i.e., G[H]

is r-regular and cannot any more vertices from the rest of the graph to H to obtain larger r-regular graph.
The set H forms the set of players investing in NDDS, i.e. I∗ = H. This follows from the observation
that every v ∈ I∗ has degG[I∗] = r ∈ Dv and the set is maximal.

For the reverse direction, assume, I∗ is the set of players investing in the final graph of NDDS
instance (here we can just use final graph and input graph interchangeably as no modifications are
done since k = 0 and edges have weight 1). Following the fact that every v ∈ I∗ has degG[I∗] = r,
we can directly consider I∗ as a solution to r-REGULAR SUBGRAPH. This completes the reduction. Since
r-REGULAR SUBGRAPH is para-NP-hard w.r.t k + r even when α = 3 and the reduction directly maps the
parameters (k, r, α) to (k∗, r∗, α∗). We are able to establish that NDDS(sigmoid, > r) is para-NP-hard
w.r.t parameter r even when the maximum size of investment degree set i.e. D is 1, k=0, and the graph
is unweighted.

We can further observe from the reduction that the result applies to homogeneous variant as well.

Corollary 4. NDDSα(sigmoid, > r) is para-NP-hard w.r.t parameter r + k even when the maximum size
of investment degree set i.e. D is 1, k=0, and the graph is unweighted. Moreover, with respect to the it is
para-NP-hard even w.r.t α.

Proof. It trivial to notice that the reduced instance in all correspond to NDDSα(sigmoid, > r).

[MD20] deals with the problem of deciding the existence of PSNE in BNPG games. The problem can
be reduced to NDDS(general, > r/ ⊇ S), by setting budget k = 0 and some arbitrary non-zero weight
to all the vertex pairs (which is basically the cost of addition or deletion of an edge) and r = 0 or S = φ.
This restricts the problem to no edge editions. With some more observation, we can claim that there is a
PSNE in the BNPG game (editions not allowed) if and only if there is a PSNE with r = 0 (resp. S = φ),
for NDDS(general, > r or ⊇ S). Thus we inherit the following results from [MD20]:

11

Observation 2. For X ∈ {> r, ⊇ S}, NDDS(general, X) is W[2]-Hard w.r.t |I| where I is the set of players
investing in the final solution. In fact the problem is W[2]-Hard w.r.t n− |I| as well.

Observation 3. For X ∈ {> r, ⊇ S}, NDDS(general, X) is W[1]-hard w.r.t parameter treewidth even when
all the players have identical utility functions.

Observation 4. For X ∈ {> r, ⊇ S}, NDDS(general, X) is para-NP-hard w.r.t maximum degree of input
graph (∆) as parameter even when all the players have identical utility functions.

Observation 5. For X ∈ {> r, ⊇ S}, NDDS(general, X) is para-NP-hard w.r.t the diameter (δ) of input
graph as parameter even when all the players have identical utility functions.

Observation 6. For X ∈ {> r, ⊇ S}, NDDS(general, X) is para-NP-hard w.r.t the (diameter (δ), number
of distinct utility functions (nU) of input graph as parameter even when all the players have identical utility
functions.

6 Algorithms

Following numerous hardness results in FPT complexity from section 5, we now aim to explore algo-
rithms within XP complexity, which is the best solution plausible for W[1]-hard problems.We first present
a trivial XP algorithm for NDDS w.r.t the natural parameter k.

Theorem 10. All versions of NDDS can be solved in XP time nO(k) where k is the input parameter (budget)
and n is the total number of players.

Proof. For all k ′ 6 k, we can enumerate all possible combinations of edges from
(
n
2

)
possibilities and

guess the solution set by a brute force in time at most k
((n2)
k

)
, which is at most nO(k).

6.1 The Homogeneous Variant: NDDSα

We analyze the NDDSα variant with the aim to resolve the problem with a relaxed set of constraints.
Recall that in NDDSα, the corresponding degree sets have the same minimum value, i.e., ∀i ∈ V[G] αi =
α. We consider the NDDSα(convex, > r) problem, which has already been proven to be W[1]-hard with
respect to the parameter k+ r+ α and para-NP-hard w.r.t parameter r+ k (Corollary 3, 4).

We first define the notion of deficiency for a player as follows:

Definition 13 (Deficiency). For a graph G, and its vertex v ∈ V(G), let dfG(v) = max{0,k − degG(v)}
denote the deficiency of v in G. By df(G) =

∑
v∈V(G) dfG(v) we denote the total deficiency in G.

Note that the problem NDDSα(convex, > r) can now be stated as follows: “Decide whether there
exists an induced subgraph H of input graph G, such that there exists a set of edges of size at most k, that
can be added toH, to satisfy the deficiencies of all the vertices inH”. In other words,H after edge edition,
we have that dfH(v) = 0

∣∣∣
∀v∈V[H]

. Moreover, addition of an edge between two vertices of G can decrease

df(G) by at most two. It also does not make any sense to add edges that do not decrease deficiency if
we aim to complete G to a graph of minimum degree k. We distinguish added edges by whether they
decrease deficiency by two or one. That is, adding an edge between two vertices u, v ∈ V(G) (we can do
that only if uv /∈ E(G)), decreases the total deficiency by two only if both dfG(u) > 0 and dfG(v) > 0.
We call such edge addition good. Otherwise, an edge addition makes sense only if at least one of dfG(u)
and dfG(v) is greater than zero. In that case, it decreases the total deficiency in G by one, and we call
such edge addition bad.

Thus adding a good edge decreases the total deficiency by 2 and adding a bad one by 1. This gives us
the following lemma for NDDSα(convex, > r) on general graphs:

Theorem 11. Given α and input graph H on at least α+ 1 vertices as an instance of NDDSα(convex, > r),
all the players in H can be made to invest by adding k edges where:⌈1

2

∑
v∈V(H)

df(v)
⌉
6 k 6

∑
v∈V(H)

df(v)

, and this cannot be done with lesser edge additions.

12

Proof. From the modified problem definition, we know that – in order to bound the cardinality (k) of
the set of edges, that can be added to H, we need satisfy the deficiencies of all the vertices in H. In
other words, H after edge edition, we have that dfH(v) = 0

∣∣∣
∀v∈V[H]

. Note that an addition of an edge

between two vertices of H can decrease df(H) by at most two. It also does not make any sense to add
edges that do not decrease deficiency if we aim to complete H to a graph of minimum degree k. The
optimal number of such edges would depend on the number of added edges by whether they decrease
deficiency by two or one, i.e., whether they are good or bad. Thus adding a good edge decreases the
total deficiency by 2 and adding a bad one by 1. In the worst case, each edge can be a bad edge, giving us
the claimed upper bound. Whereas, considering the best case, when all the edges in the optimal solution
set are good, we establish the lower bound.

Studying the problem of NDDSα(convex, > r) in terms of deficiencies of the vertices, we get the
notion about similarity of the the problem with EDGE-k-CORE. We provide a parameter preserving re-
duction from NDDSα(convex, > r) to EDGE-k-CORE. This would apply any algorithmic results available
for EDGE-k-CORE to our problem.

Theorem 12.
NDDSα(convex,> r) 6FPT EDGE-k-CORE

Proof. We reduce to EDGE-k-CORE from our problem preserving the parameter (FPT Reduction). Con-
sider the input instance of NDDSα(convex, > r∗) [G∗(V∗, E∗),k∗,α]. We create an instance of EDGE-k-
CORE: A simple undirected unweigthed graph G(V, E), limit on edge additions k, mimimum required
degree of subgraph H = α and minimum size of H = r; as follows:

1. G = G∗ i.e. V = V∗ and E = E∗;

2. r = r∗

3. k = k∗

4. α = α∗

This completes the construction of the reduction. Clearly the reduction is FPT Reduction as it pre-
serves the parameters. We claim that a there exists a solution S to EDGE-k-CORE instance is a solution to
if and only if there is a solution S∗ = S for the corresponding reduced NDDSα instance.

For forward direction, assume, S is the minimal feasible solution to EDGE-k-CORE instance. The final
graph after edge modifications be G ′. Since S is feasible solution, we know that there is a set H ⊆ V[G ′]
such that adding at S to G, we obtain a graph G ′ and every v ∈ H has degG[H] > α and |H| > r. For
the NDDSα(convex, > r∗) instance, set solution edge set to be S∗ = S. Now the final set of players
investing, say I∗, is a superset of H i.e. I∗ ⊇ H. Since v ∈ H has degG[H] > α > αv. We can claim that
all vertices from H are investing (xv = 1). Thus we get a |I∗| > |H| > r.

For reverse direction, assume, S∗ is the minimal feasible solution to NDDSα(convex, > r∗) instance.
From Observation 1, we know that the S∗ is disjoint from set of edges E∗. Or in simple words, S∗

corresponds to only edge additions to the graph G∗. The final graph after edge modifications be G∗
′
.

Since S∗ is feasible solution, we know that there is a set I∗ ⊆ V∗, such that ∀v ∈ I∗ degG[I∗][v] ⊆ DG
∗

v .
This further implies that ∀v ∈ I∗ degG[I∗][v] > αv > α and |I∗| > r. We can construct feasible solution
S = S∗ of EDGE-k-CORE. The required subgraph satisfying the min degree constraint is H = I∗. This
completes the reduction.

Now we present a polynomial time algorithm for NDDSα(convex, > r) on forests and the underlying
graph-theoretical result, which we find interesting on its own. The algorithm is a dynamic programming
over subtrees. Normally, an algorithm like this would go from leaves to larger and larger subtrees,
storing for every subtree a list of possible configurations a solution could induce on this subtree. In the
NDDSα(convex, > r) problem, naturally we want to store information about edges added inside the
subtree and vertices from the subtree which we may later connect to something outside.

Naively, this would take exponential space, as it seems we have to store at least the degrees of the
selected vertices in the subtree. However, the following theorem from [FSS20], which is the central
technical result of this section, is crucial to the future developments.

13

Lemma 1. [FSS20, Theorem 4] For any integer k, any forest T on at least k + 1 vertices can be completed
to a graph of minimum degree k by adding at most⌈1

2

∑
v∈V(T)

max{0,k− deg(v)}
⌉

or⌈1
2

∑
v∈V(T)

df(v)
⌉

edges, and this cannot be done with less edge additions. Moreover, in the case k > 4, it can be done in a way
that the added edges form a connected graph on the vertices they cover.

The above lemma gives us the following observations for NDDSα:

Observation 7. Given α and input graph H on at least α + 1 vertices as an instance of NDDSα(convex,
> r), all the players in H can be made to invest by adding k edges where:

k =
⌈1
2

∑
v∈V(H)

df(v)
⌉

, and this cannot be done with lesser edge additions.

For an optimal algorithm for forests, Theorem 1 means that whenever we fix the subset of vertices H,
we have to add exactly ddf(T [H])/2e edges in order to induce a k-core on H. Thus it is enough to find
a subset of vertices H of size at least p with the smallest possible df(T [H]). This objective turns out to
be simple enough for the bottom-top dynamic programming and ultimately leads to a polynomial time
algorithm, stated formally in the next theorem.

Theorem 13. [FSS20, Theorem 5] EDGE-k-CORE is solvable in time O(kn2) on the class of forests, where
k is required minimum degree of the induced solution subgraph.

Observation 8. NDDSα(convex, > r) is solvable in time O(αn2) on the class of forests.

Now we employ the reduction from Theorem 12, to give an algorithm for NDDSα(convex, > r∗)
parameterized by the minimum size of a vertex cover of the input graph G. We employ the results on
EDGE-k-CORE from [FSS20, Section 4], which establishes that EDGE-k-CORE admits an FPT algorithm.
Secondly, they prove that this problem does not admit polynomial kernel unless the polynomial hierarchy
collapses. The high level description of the main ideas behind the ILP algorithm are as follows: In order to
prove that EDGE-k-CORE is FPT parameterized by the vertex cover number of the input graph, construct
an FPT-time Turing reduction from EDGE-k-CORE to an instance of integer linear program (ILP) whose
number of variables is bounded by some function of the vertex cover. While reducing to ILP is a common
approach in the design of parameterized algorithms, see [CFK+15, Chapter 6], the reduction for EDGE-
k-CORE is not straightforward and needed development of new combinatorial results.

Theorem 14. [FSS20, Theorem 14] EDGE-k-CORE admits an FPT algorithm when parameterized by the
vertex cover number. The running time of this algorithm is 2O(vc·3vc) · nO(1), where vc is the minimum size
of a vertex cover of the input n-vertex graph.

Observation 9. NDDSα(convex, > r∗) admits an FPT algorithm when parameterized by the vertex cover
number. The running time of this algorithm is 2O(vc·3vc) · nO(1), where vc is the minimum size of a vertex
cover of the input n-vertex graph.

We believe that this algorithm nicely employs a classical FPT framework as well as involves classical
graph-theoretical results, that are tweaked to fit in the paradigm of parameterized complexity.

Following this, we again exploit the FPT-algorithm for EDGE-k-CORE parameterized by tw+k, where
k is the required minimum degree of the solution subgraph, given by [FSS20]. Their work improves upon
the following result on FPT for EDGE-k-CORE by Chitnis and Talmon which runs in time (k+tw)O(tw+b) ·
nO(1) by employing their algorithm as a subroutine. Again to avoid any confusion because of difference
in naming convention of parameters for the EDGE-k-CORE and NDDSαproblem, we point out that here b

14

implies the budget, i.e., the allowed size of set of edges to be added, and k implies the required minimum
degree of the solution subgraph. Intuitively, they start with the central combinatorial result of this section
which allows the algorithmic improvement establishing that whenever the total deficiency of a graph G
exceeds a polynomial in k, G can be completed to a graph of minimum degree k using the minimum
possible number of edges with the required edge additions identifiable in polynomial time. This result
is interesting on its own, since it considerably simplifies the problem whenever the budget is sufficiently
high compared to k. If we are trying to identify the best vertex set H which induces a k-core, we have to
only care about the total deficiency of G[H], and not of any particular structure on it. The final result is
as follows:

Theorem 15. [FSS20, Theorem 21] EDGE-k-CORE admits an FPT algorithm when parameterized by the
combined parameter tw + k, where k is the minimum degree of the required solution subgraph.

The above theorem, along with the reduction from Theorem 12 gives the following results for
NDDSα:

Observation 10. NDDSα(convex, > r∗) admits an FPT algorithm when parameterized by the combined
parameter tw + α, where α is the minimum degree of the required solution subgraph.

7 Conclusion and Future Directions

In this paper, we proved W[1]-hardness, giving a lower bound for the problem of Network Design for
BNPG games. This rules out FPT. Following this, we established an upper bound in the form XP-algorithm
w.r.t the budget for all classes and FPT algorithms with a combination of parameters, making the pa-
rameterized analysis complete. However, several research questions in Approximation algorithms or
FPT-Approximations remain open. There are two broad directions in terms of designing approximation
algorithms of NDDS (1) Relaxing the budget by an additional factor of ε (i.e. the target budget is
(1+ε).k in this case) or (2) Relaxing the PSNE constraints by an ε factor (ε-PSNE). We can also look at
more complex structural parameters such as feedback vertex set or feedback arc set of the input graph
as well as distance to trivial graph classes. For the W-Hard variants, one can try solving the problem on
relatively easier input graph classes like, cycles, paths, caterpillars, etc.

References

[BE17] Robert Bredereck and Edith Elkind. Manipulating opinion diffusion in social networks. In
IJCAI, pages 894–900, 2017.

[BK+07] Yann Bramoullé, Rachel Kranton, et al. Public goods in networks. Journal of Economic
Theory, 135(1):478–494, 2007.

[BKD14] Yann Bramoullé, Rachel Kranton, and Martin D’amours. Strategic interaction and net-
works. American Economic Review, 104(3):898–930, 2014.

[Buc20] Elisabeth Buchwald. Why do so many Americans refuse to wear face masks? Politics is
part of it — but only part. https://tinyurl.com/hu6rxzfv, 2020.

[CFG20] Matteo Castiglioni, Diodato Ferraioli, and Nicola Gatti. Election control in social networks
via edge addition or removal. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 1878–1885, 2020.

[CFK+15] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4.
Springer, 2015.

[CT18] Rajesh Chitnis and Nimrod Talmon. Can we create large k-cores by adding few edges? In
International Computer Science Symposium in Russia, pages 78–89. Springer, 2018.

15

https://tinyurl.com/hu6rxzfv

[FG06] Jörg Flum and Martin Grohe. Parameterized complexity theory. 2006. Texts Theoret. Com-
put. Sci. EATCS Ser, 2006.

[FSS20] Fedor V. Fomin, Danil Sagunov, and Kirill Simonov. Building large k-cores from sparse
graphs. CoRR, abs/2002.07612, 2020.

[GGJ+10] Andrea Galeotti, Sanjeev Goyal, Matthew O Jackson, Fernando Vega-Redondo, and Leeat
Yariv. Network games. The review of economic studies, 77(1):218–244, 2010.

[HS16] Ashish R Hota and Shreyas Sundaram. Optimal network topologies for mitigating security
and epidemic risks. In 2016 54th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1129–1136. IEEE, 2016.

[IKMW07] Nicole Immorlica, Jon Kleinberg, Mohammad Mahdian, and Tom Wexler. The role of
compatibility in the diffusion of technologies through social networks. In Proceedings of
the 8th ACM conference on Electronic commerce, pages 75–83, 2007.

[Kle07] Jon Kleinberg. Cascading behavior in networks: Algorithmic and economic issues. Algo-
rithmic game theory, 24:613–632, 2007.

[KYV20] David Kempe, Sixie Yu, and Yevgeniy Vorobeychik. Inducing equilibria in networked public
goods games through network structure modification. arXiv preprint arXiv:2002.10627,
2020.

[LKGM18] Vadim Levit, Zohar Komarovsky, Tal Grinshpoun, and Amnon Meisels. Incentive-based
search for efficient equilibria of the public goods game. Artificial Intelligence, 262:142–
162, 2018.

[MCWG+95] Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic theory,
volume 1. Oxford university press New York, 1995.

[MD20] Arnab Maiti and Palash Dey. On parameterized complexity of binary networked public
goods game, 2020.

[Mor00] Stephen Morris. Contagion. The Review of Economic Studies, 67(1):57–78, 2000.

[Rou07] Tim Roughgarden. Routing games, algorithmic game theory, noan nisan, tim roughgarden,
eva tardos, cijay v. vazirani, 2007.

[Sam54] Paul A Samuelson. The pure theory of public expenditure. The review of economics and
statistics, 36(4):387–389, 1954.

[SDE+12] Daniel Sheldon, Bistra Dilkina, Adam N Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon
Conrad, Carla P Gomes, David Shmoys, William Allen, Ole Amundsen, et al. Maximizing
the spread of cascades using network design. arXiv preprint arXiv:1203.3514, 2012.

[SHKW14] Liat Sless, Noam Hazon, Sarit Kraus, and Michael Wooldridge. Forming coalitions and
facilitating relationships for completing tasks in social networks. In Proceedings of the
2014 international conference on Autonomous agents and multi-agent systems, pages 261–
268, 2014.

[Won20] Tessa Wong. Coronavirus: Why some countries wear face masks and others don’t. https:
//www.bbc.com/news/world-52015486, 2020.

[YZBV20] Sixie Yu, Kai Zhou, P Jeffrey Brantingham, and Yevgeniy Vorobeychik. Computing equilib-
ria in binary networked public goods games. In AAAI, pages 2310–2317, 2020.

16

https://www.bbc.com/news/world-52015486
https://www.bbc.com/news/world-52015486

	Introduction
	Prior Work
	Our Contribution
	Preliminaries
	Problem Definition
	Parameters Used

	Hardness Results
	Algorithms
	The Homogeneous Variant: NDDS

	Conclusion and Future Directions

