
On Parameterized Complexity of

Liquid Democracy

Palash Dey
Arnab Maiti

Amatya Sharma
Indian Institute of Technology Kharagpur

Problem Definition

Liquid Democracy

Voters can delegate their votes to other agents who can vote on their behalf

Disruptive approach to democratic voting system

Any
consequences

of LD?

Consequence??
Super Voters!!
[Kling, Kunegis, Hartmann, Strohmaier, Staab]

➢ “PowerFul” Sink Nodes
➢ Have a lot of voting power
➢ May turn up to be unfair

To Deal with this :

➢ Central mechanism ensures that no super-voter
has a lot of voting power

➢ Allow Multiple Delegations

Sink Nodes

Nodes with 0-outdegree

‘Sinks’ of the Graph.

Super Voter with weight
(power) 7

Delegation Graph

➢ Vertices = Voters
➢ Directed edge from vertex i to vertex j iff voter i delegates her vote to voter j
➢ May contain cycles

Find a acyclic subgraph of the delegation graph such that no super-voter has a lot of
voting power

Resolve Delegation Problem

● Input :
○ Directed Delegation graph G (V, E)
○ Sink set T ⊆ V

○ Max Weight Limit λ
● Goal :

○ Decide if there exists a spanning subgraph H ⊆ G such that
■ H is a forest with roots at T
■ Weight of each tree is at most λ

Isolated
vertices??

Thinking of
Approximation?

Ω(log n)
lower bound on
approx-factor

Our Results

Resolve
Delegation

Para-NP
Hardness

FPT Algorithm
Using Bounded Search

Tree
Structural Results

Parameter :
 Edges to Be DeletedParameter :

Sink Vertices

Fractional
Delegations

LP -Formulation

Kernelization

λt - Kernel Parameter :
(λ, Δ)

Parameter :
Non-sink nodes

W[1]-Hardness

Parameter :
 Treewidth

Result 1 : Para-NP-Hardness (t)

Thm. Resolve Delegation problem is NP-complete even if we have only 3 sink vertices. In

particular, Resolve Delegation is para-NP-hard with respect to the parameter t.

Reduction

Two Vertex Disjoint
Paths

Two Vertex Disjoint
Paths is NP-complete

Black Box
Resolve

Delegation

problem is

NP-complete
even if we have

only 3 sink
vertices.

Two Vertex
Disjoint
Paths is

NP-C

Two Vertex Disjoint Paths

Input : (G, s1 , t1 , s2 , t2)

➢ Directed graph G = (V, E)
➢ Two disjoint vertex pairs (s1 , t1) and (s2 , t2)

Goal : Decide if there exists two vertex disjoint paths P1 and P2
 Pi is a path from si to ti for i ∈ [2]

Black Box

Result1 : Para-NP-Hardness (t)...

➢ V’ = {a
v
 : v ∈ V} ∪ D

1
 ∪ D

1
’∪ D

2
 ∪ D

2
’ ∪ D

3
’

where

|D
1

 | = |D
2

’| = 10n

|D
1

’| = |D
2

 | = 5n

|D
3

’| = 15n

➢ E’ = {(a
u
 , a

v
) : (u, v) ∈ E} ∪ F

➢ λ = 17n

Reduction

(G = (V, E), s1 , t1 , s2 , t2)

(

(G’ = (V’ , E’), λ).

Main Reduction

Result1 : Para-NP-Hardness (t)...

F
➢ each D is a path
➢ {(d

i
 , a

si
), (a

ti
 , d

i
’) i=1,2}

➢ {(a
v
 , t

3
’) | ∀v ∈ V}

Result1 : Para-NP-Hardness (t)...

d
i
, t

i
 = end, start vertices D

i

d
i
’, t

i
’ = start, end vertices D

i
’

Sinks : t’
1

, t’
2

,

t’
3 Sinks in G?

Result 2 : FPT w.r.t erem

Thm. Resolve Delegation problem has a FPT with respect to the parameter e
rem

(number of edges to be deleted).

Branching
Note: = e

rem
 = |E| − (|V| -|T|)

1. Consider vertex with maximum outdegree (d
out

(v))
2. Delete one of the two groups of edges :

{1, . . . , ⌊d
out

(v)⌋} and { ⌈d
out

(v)⌉ , . . . , d
out

(v)}
3. Solve recursively If erem > 0,

max outdeg > ?

Branching : Proof And Analysis

Obsv. If k > 0 and only the sink nodes have outdegree 0, then
there is a non-sink node with outdegree at least 2

Branching
1. Consider max out

deg vertex v
2. Delete one of :

{1, . . . , ⌊d
out

(v)⌋}
{ ⌈d

out
(v)⌉ , . . . ,

d
out

(v)}
edge sets

3. Solve recursively

Result3 : FPT w.r.t erem...

T(𝜇) = T(𝜇
1

) + T(𝜇
2

) + T’(node)

T’(node) = nO(1)

T(𝜇
i
) ≤T(𝜇 - 1) [T is non-dec]

T(𝜇) ≤ 2.T(𝜇-1) + T’(node)

T(k) = 2k.nO(1) [k=e
rem

]

Result3 : FPT w.r.t erem...

Result 3 : Fractional Delegations

Thm. There exists a linear programming formulation for the optimization version of
Resolve Delegation where fractional delegation of votes is allowed.

Thus the fractional variant is solvable in polynomial time.

● Similar to the LP formulation of flow-problems (e.g. Max-FLow-Min-Cut etc)
● x

u,v
 := weight to every edge of solution graph (0 means no edge)

● x
u,v

:= points towards ‘fractional’ power delegated by u to v

● Constraints for
○ Flow Conservation (Vote Conservation)
○ Non-Negative Delegations

The Linear Program

Objective
Function

Vote/FLow
Conservation

> Non-Negative
Delegation

> Ignoring edges
not in input

Result 4 : A λt - Kernel

Thm. There is a kernel for Resolve Delegation consisting of at most λt vertices.

FPT algorithm for the Resolve Delegation problem parameterized by (λ, t).

● If the n > λt, then instance is a NO instance.

Hint : Pigeonhole Principle!!

Sinks = Holes
Non-Sinks = Pigeons

Result 5 : Para-NP-Hardness (λ, ∆)

Thm. Resolve Delegation problem is NP-complete even if we have λ = 3 and both the
out-degree and in-degree of every vertex is at most 3.

Resolve Delegation is para-NP-hard with respect to the parameter (λ, ∆)

Reduction

(3,B2)-SAT
(3,B2)-SAT

 is NP-complete

Black Box

(3, B2)-SAT

Input : Instance (X,C)

where

➢ Variables : X = {x
i
 : i ∈ [n]}

➢ 3-CNF Clauses : C = {C
j
 : j ∈ [m]}

➢ x
i
 and x̄

i
 each appear in exactly 2 clauses [for all i ∈

[n]]

Goal : Decide if there is an assignment satisfying all clauses

(3,B2)-SAT
is

NP-C

Black Box

Result5 : Para-NP-Hardness (λ, ∆)...

Result5 : Para-NP-Hardness (λ, ∆)...

➢ Vertices = Clauses
➢ Sinks = Literals
➢ Dummies to enforce to

pick exactly one of x, ~x
➢ λ = 3

a
j

The delegation graph in

reduction is Directed

Acyclic

An Extension to Bipartite Graphs and DAG

● The delegation graph in reduction is Directed Acyclic
● Bipartite as well!!

Result5 : Para-NP-Hardness (λ, ∆)...

Result 6 : W[1]-Hardness w.r.t tree-width

Thm. Resolve Delegation is W[1]-hard when parameterized by the treewidth of
the instance graph.

Minimum Maximum Outdegree

w1 w2

w3

w4

w1 w2

w3

w4

 ∑ wi ≤ r

NOTE: w is represented in Unary

w1

w2

w3

Input instance: (G, w, r)

Reduction

3

(G, w, r)

(H, λ=r+1)

An Extension to Bipartite Graphs and DAG

● The delegation graph in reduction is Directed Acyclic
● Bipartite as well!!

Result 7 : FPT w.r.t no. of non-sink nodes

Thm. The Resolve Delegation problem has a FPT with respect to the parameter k
which is the number of non-sink nodes in G (delegation graph).

Notation of weight of vertex

w=4

Points to remember

1) Weight of each node initially is 1

2) Weight of a tree rooted at a sink node is now sum of the weights of node in the tree

3) Problem instance is denoted by (G, λ, k) where k is our parameter: non-sink nodes

Bounded search tree based algorithm

Reduction 1:

w2

w1

w1+w2

Reduction 2: Remove self loops or multiple edges

Reduction 3: If G contains a non-sink node v with outdegree more than 2(k − 1) and
indegree 0, delete v from G. The new instance is (G − v, λ, k − 1)

Branching rule

Size greater than
2(k-1)

Apply R.D 1,2

Apply R.D 3

Future Directions

➢ What if the underlying undirected graph of the input graph is a tree?
➢ Kernalizations with respect to:

○ no. of non-sink nodes
○ no. of edges to be deleted

➢ FPT-Approximation :
○ Ω(log n) lower bound on the approximation factor
○ Is there o(logn) FPT-Approximation??

Practical Implications

Google experimented liquid democracy. Internal
social network system Google Votes.

Experimental form of liquid democracy tested
at the Vienna University of Technology [2012]

Civicracy

International labor union
Uses liquid democracy using self-developed apps

The Industrial Workers of the
World

Software used for political opinion formation
and decision making

Thanks
Q&A

#
#
#
#

Preliminaries

Parameterized Algorithms

Parameterized problem : Language L ⊆ Σ∗ × N, where Σ is a fixed, finite
alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter.

Fixed Parameter Tractable [FPT] : Running time f(k)nc
[for some constant c>0]

Slice-wise Polynomial [XP] : Running time f(k)ng(k)

What’s k??
How to calculate it

beforehand???

Para-NP-Hardness

Para-NP [Flum and Grohe]:

Class of parameterized problems solvable in time f(k).|x|O(1) by a nondeterministic TM
[f is computable]

Para-NP-Hard :
NP-Hard for a constant value of parameter

NP-Hard for a
“Slice” of the

parameter

Kernelization aka Kernel

Kernelization algorithm given an instance (I,k) of problem Q -

➢ Runs in polynomial time
➢ Returns an equivalent instance (I’, k’) of Q
➢ A(k) ≤ g(k) for some computable function g : N → N.

Reduction rule : Polynomial (in |I| and k) time computable function
that maps an instance (I,k) to an equivalent instance (I’ , k’) of the same
problem.

Bounded Search Trees aka Branching

➢ Origin from idea of backtracking
➢ Tries to build a feasible solution to the

problem by a sequence of decisions on
its branching

➢ Search Tree
➢ Traverse till a solution leaf node

What’s Bounded??

◆ Depth of tree
◆ Node Processing Time
◆ Branching/Children at all levels

Fig. A search tree for vertex cover

Parameters Under Consideration

We study the problem w.r.t following parameters :

➢ λ := max weight

➢ t = |T| := number of sink nodes
➢ e

rem
:= Number of edges to be removed to form solution

➢ k := number of non-sink nodes
➢ ∆ := maxdegree [max (max indeg, max outdeg)]

