On Parameterized Complexity of Liquid Democracy

Palash Dey Arnab Maiti Amatya Sharma Indian Institute of Technology Kharagpur

Problem Definition

Liquid Democracy

Voters can delegate their votes to other agents who can vote on their behalf

Disruptive approach to democratic voting system

Consequence?? Super Voters!!

[Kling, Kunegis, Hartmann, Strohmaier, Staab]

- > "PowerFul" Sink Nodes
- Have a lot of voting power
- > May turn up to be unfair

To Deal with this :

- Central mechanism ensures that no super-voter has a lot of voting power
- Allow Multiple Delegations

Sink Nodes

Nodes with 0-outdegree

'Sinks' of the Graph.

Super Voter with weight (power) 7

Delegation Graph

- Vertices = Voters
- > Directed edge from vertex i to vertex j iff voter i delegates her vote to voter j
- > May contain cycles

Find a acyclic subgraph of the delegation graph such that no super-voter has a lot of voting power

Resolve Delegation Problem

- Input:
 - Directed Delegation graph G (V, E)
 - $\circ \quad \mathsf{Sink} \mathsf{ set} \mathsf{T} \subseteq \mathsf{V}$
 - \circ Max Weight Limit λ
- Goal :
 - Decide if there exists a spanning subgraph $H \subseteq G$ such that
 - H is a forest with roots at T
 - Weight of each tree is at most λ

Thinking of Approximation? Ω(log n) lower bound on approx-factor

Isolated vertices??

Our Results

Result 1 : Para-NP-Hardness (t)

Thm. Resolve Delegation problem is **NP-complete even if we have only 3 sink vertices**. In particular, Resolve Delegation is **para-NP-hard** with respect to the **parameter t**.

Two Vertex Disjoint Paths

Input: (G, s1, t1, s2, t2)

- > Directed graph G = (V, E)
- Two disjoint vertex pairs (s1, t1) and (s2, t2)

Goal : Decide if there exists two vertex disjoint paths P1 and P2 Pi is a path from si to ti for $i \in [2]$

Main Reduction

>
$$V' = \{a_v : v \in V\} \cup D_1 \cup D_1' \cup D_2 \cup D_2' \cup D_3'$$

where

$$|D_1| = |D_2'| = 10n$$

 $|D_1'| = |D_2| = 5n$
 $|D_3'| = 15n$
> E' = {(a_u, a_v) : (u, v) \in E} U F

≻ λ = 17n

Result1 : Para-NP-Hardness (t)...

 $Sinks: t'_1, t'_2,$ ť₃ Sinks in G?

F $\Rightarrow each D is a path$ $\Rightarrow \{(d_i, a_{si}), (a_{ti}, d_i') i=1,2\}$ $\Rightarrow \{(a_v, t_3') \mid \forall v \in V\}$ $d_i, t_i = end, start vertices D_i$ $d_i', t_i' = start, end vertices D_i'$

Result 2 : FPT w.r.t e_{rem}

Thm. Resolve Delegation problem has a FPT with respect to the parameter e_{rem} (number of edges to be deleted).

Branching

Note: = $e_{rem} = |E| - (|V| - |T|)$

- 1. Consider vertex with maximum outdegree $(d_{out}(v))$
- 2. Delete one of the two groups of edges :

 $\{1, \dots, Ld_{out}(v) \rfloor\}$ and $\{ \lceil d_{out}(v) \rceil, \dots, d_{out}(v) \}$

3. Solve recursively

Branching : Proof And Analysis

Obsv. If k > 0 and only the sink nodes have outdegree 0, then there is a non-sink node with outdegree at least 2

 $T(\mu) = T(\mu_1) + T(\mu_2) + T'(\text{node})$ $T'(\text{node}) = n^{O(1)}$ $T(\mu_i) \le T(\mu - 1) \quad [\text{T is non-dec}]$ $T(\mu) \le 2.T(\mu - 1) + T'(\text{node})$ $T(k) = 2^k \cdot n^{O(1)} \qquad [k=e_{\text{rem}}]$

Result 3 : Fractional Delegations

Thm. There exists a linear programming formulation for the optimization version of Resolve Delegation where fractional delegation of votes is allowed.

Thus the fractional variant is solvable in polynomial time.

- Similar to the LP formulation of flow-problems (e.g. Max-FLow-Min-Cut etc)
- x_{uv} := weight to every edge of solution graph (0 means no edge)
- x_{uv}^{v} := points towards 'fractional' power delegated by u to v
- Constraints for
 - Flow Conservation (Vote Conservation)
 - Non-Negative Delegations

The Linear Program

Result 4 : A λt - Kernel

Thm. There is a kernel for Resolve Delegation consisting of at most λt vertices.

FPT algorithm for the Resolve Delegation problem parameterized by (λ , t).

• If the $n > \lambda t$, then instance is a **NO** instance.

Hint : Pigeonhole Principle!!

Sinks = Holes Non-Sinks = Pigeons

Result 5 : Para-NP-Hardness (λ , Δ)

Thm. Resolve Delegation problem is NP-complete even if we have $\lambda = 3$ and both the out-degree and in-degree of every vertex is at most 3.

Resolve Delegation is para-NP-hard with respect to the parameter (λ , Δ)

(3, B2)-SAT

Input : Instance (X,C)

where

- > Variables : $X = \{x_i : i \in [n]\}$
- > 3-CNF Clauses : $C = \{C_j : j \in [m]\}$
- > x_i and \bar{x}_i each appear in exactly 2 clauses [for all $i \in [n]$]

Goal : Decide if there is an assignment satisfying all clauses

9	Black Box 🥤	
	(3,B2)-SAT is NP-C	

Result5 : Para-NP-Hardness (λ , Δ)...

- Vertices = Clauses
- Sinks = Literals
- Dummies to enforce to pick exactly one of x, ~x

 $> \lambda = 3$

The delegation graph in reduction is Directed Acyclic

An Extension to Bipartite Graphs and DAG

- The delegation graph in reduction is Directed Acyclic
- Bipartite as well!!

Result 6 : W[1]-Hardness w.r.t tree-width

Thm. Resolve Delegation is W[1]-hard when parameterized by the treewidth of the instance graph.

Minimum Maximum Outdegree

Σwi≤r

Input instance: (G, w, r)

NOTE: w is represented in Unary

An Extension to Bipartite Graphs and DAG

- The delegation graph in reduction is Directed Acyclic
- Bipartite as well!!

Result 7 : FPT w.r.t no. of non-sink nodes

Thm. The Resolve Delegation problem has a FPT with respect to the parameter k which is the number of non-sink nodes in G (delegation graph).

Notation of weight of vertex

Points to remember

- 1) Weight of each node initially is 1
- 2) Weight of a tree rooted at a sink node is now sum of the weights of node in the tree
- 3) Problem instance is denoted by (G, λ , k) where k is our parameter: non-sink nodes

Bounded search tree based algorithm

Reduction 1:

Reduction 2: Remove self loops or multiple edges

Reduction 3: If G contains a non-sink node v with outdegree more than 2(k - 1) and indegree 0, delete v from G. The new instance is $(G - v, \lambda, k - 1)$

Future Directions

- > What if the underlying undirected graph of the input graph is a tree?
- > Kernalizations with respect to:
 - no. of non-sink nodes
 - no. of edges to be deleted
- > FPT-Approximation :
 - \circ $\Omega(\log n)$ lower bound on the approximation factor
 - Is there o(logn) FPT-Approximation??

Practical Implications

Go Vote

Google experimented liquid democracy. Internal social network system Google Votes.

The Industrial Workers of the World

International labor union Uses liquid democracy using self-developed apps

Experimental form of liquid democracy tested at the Vienna University of Technology [2012]

Software used for political opinion formation and decision making

Thanks Q&A

Preliminaries

Parameterized Algorithms

Parameterized problem : Language $L \subseteq \Sigma^* \times N$, where Σ is a fixed, finite alphabet. For an instance $(x, k) \in \Sigma^* \times N$, k is called the parameter.

Fixed Parameter Tractable [FPT] : Running time f(k)n^c [for some constant c>0]

Slice-wise Polynomial [XP]: Running time f(k)n^{g(k)}

What's k?? How to calculate it beforehand???

Para-NP-Hardness

Para-NP [Flum and Grohe]:

Class of parameterized problems solvable in time $f(k).|x|^{O(1)}$ by a nondeterministic TM [f is computable]

Para-NP-Hard : NP-Hard for a constant value of parameter

> NP-Hard for a "Slice" of the parameter

Kernelization aka Kernel

Kernelization algorithm given an instance (I,k) of problem Q -

- > Runs in polynomial time
- Returns an equivalent instance (I', k') of Q
- > A(k) ≤ g(k) for some computable function $g : N \rightarrow N$.

Reduction rule : Polynomial (in |I| and k) time computable function $\frac{1}{2}$ that maps an instance (I,k) to an equivalent instance (I', k') of the same problem.

Bounded Search Trees aka Branching

- Origin from idea of backtracking
- Tries to build a feasible solution to the problem by a sequence of decisions on its branching
- Search Tree
- Traverse till a solution leaf node

What's Bounded??

- Depth of tree
- Node Processing Time
- Branching/Children at all levels

Fig. A search tree for vertex cover

Parameters Under Consideration

We study the problem w.r.t following parameters :

- $> \lambda := \max \text{ weight}$
- > t = |T| := number of sink nodes
- \succ e_{rem} := Number of edges to be removed to form solution
- k := number of non-sink nodes
- > Δ := maxdegree [max (max indeg, max outdeg)]

