Reinforcement Learning (CS60077) Term Paper

IMAGE AUGMENTATION AND AUXILIARY LOSS DUO

Team Reinforced Minds:

Faraaz Mallick

Dewang Modi

Amatya Sharma

5th Year DD CSE. IIT Kharagpur

Why learn from Images?

Use of images is common (Why? cameras, easy to capture state)

Approach

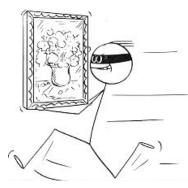
Directly learn from Images

Drawback

 \leftarrow | \rightarrow Requires High Dim Data

▶ Learn Latent Representations using AE $\leftarrow | \rightarrow$ Sample Inefficient

▶ Image Reconstruction Loss (in Off Policy) $\leftarrow | \rightarrow$ Training Instability



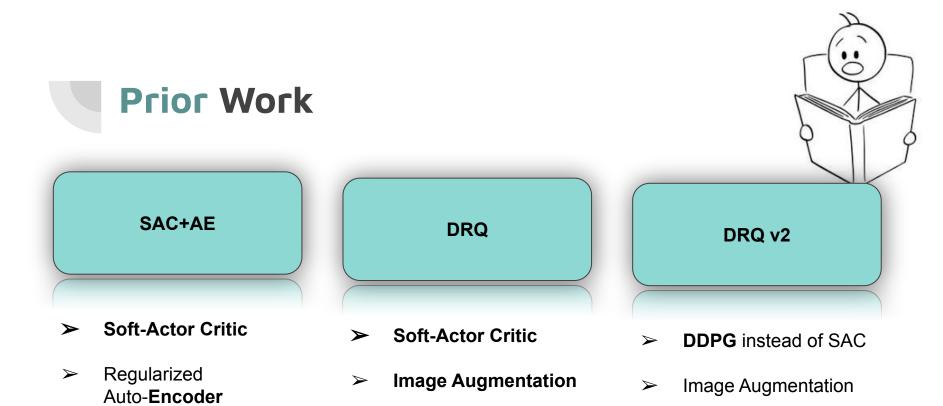
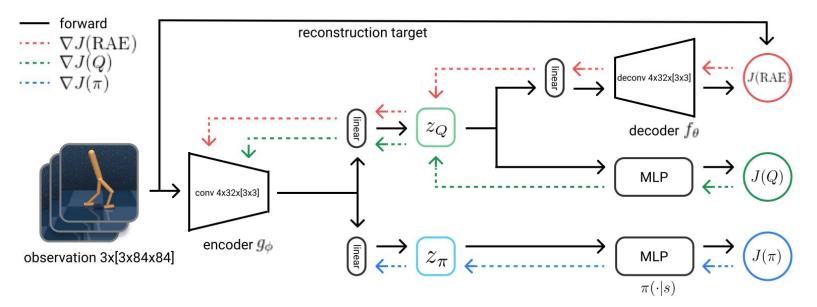


 Image reconstruction loss Prior Work...

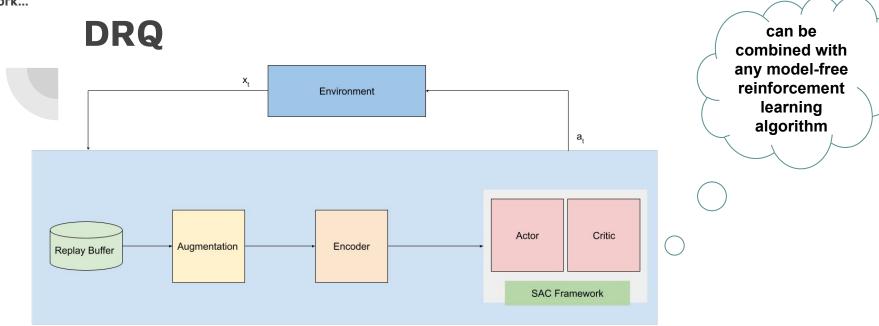
SAC+AE



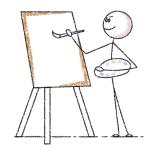
- VAE => divergence & instability
- Jointly learns Latent Representations & Policy

- At-par with model-based algorithms
- > Sample efficient

Prior Work...

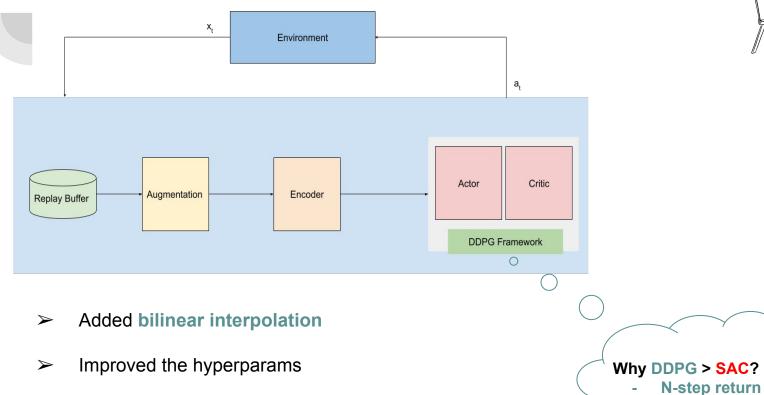


- Introduced the use of image augmentation with SAC
- > **No decoder** or image reconstruction loss
- Choice of augmentation Random shifts



Prior Work...

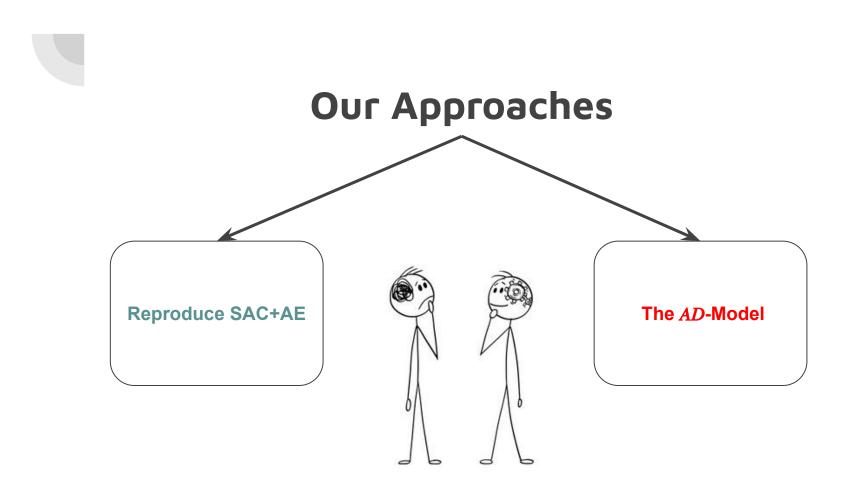
DRQ:v2



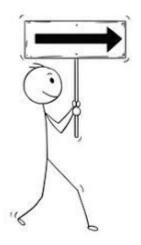
Automatic Entropy

Adjustment

Changed the algorithm to DDPG



Our Approach 1: Reproduce SAC+AE



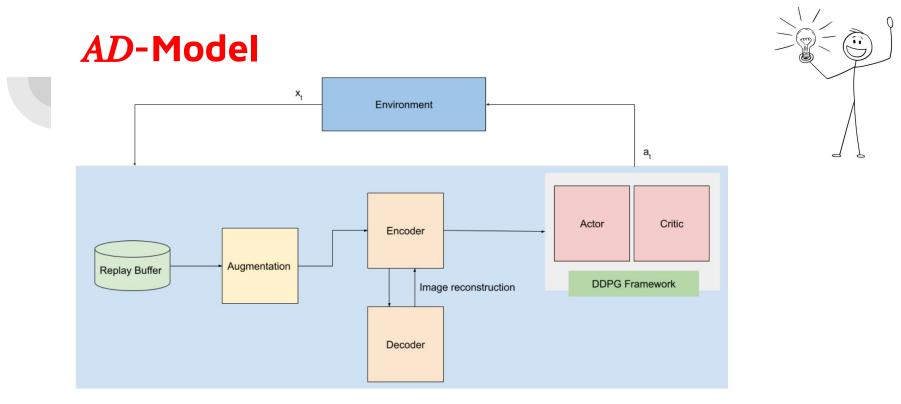
- Test the reproducibility of the SAC+AE model
- Submit our findings to ML Reproducibility Challenge 2021

- ➤ Setup:
 - Same model structure and value of hyperparameters as considered in the original paper
 - 104GB RAM 1xTesla T4 GPU

Our Approach 2: The AD-Model

- > Combine
 - Image reconstruction loss using decoder (D)
 - Image augmentation (A)
- Test the implementation in Mujoco Env on Walker-stand task
 Deepmind Control suite



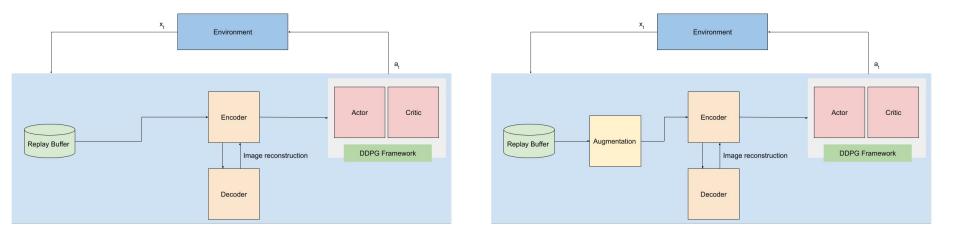


- Replay Buffer
- Augmentation Unit

- ➤ Encoder
- > Decoder
- Actor and Critic as per DDPG algorithm

The four variations

- AD(0,0): No augmentation, no reconstruction loss
- AD(0,1): No augmentation, added reconstruction loss
- AD(1,0): Added augmentation, no reconstruction loss
- AD(1,1): Added augmentation, added reconstruction loss



Loss functions

 $\mathcal{L}_{\theta_k,\xi}(\mathcal{D}) = \mathbb{E}_{\tau \sim \mathcal{D}} \big[(Q_{\theta_k}(\boldsymbol{h}_t, \boldsymbol{a}_t) - y)^2 \big] \quad \forall k \in \{1, 2\}$

> Actor loss

Critic loss

 \succ

$$\mathcal{L}_{\phi}(\mathcal{D}) = -\mathbb{E}_{oldsymbol{x}_t \sim \mathcal{D}}ig[\min_{k=1,2} Q_{ heta_k}(oldsymbol{h}_t,oldsymbol{a}_t)ig]$$

Image Reconstruction Loss

 $\mathcal{L}_{AE}(\mathcal{D}) = \mathbb{E}_{\rtimes_t \sim \mathcal{D}} \left[\text{MSE}(\mathbf{o}_t, \mathbf{z}_t) + \lambda_{\mathbf{z}} ||\mathbf{z}_t||^2 \right]$

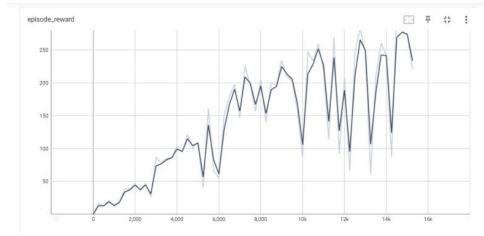
Results

Results1

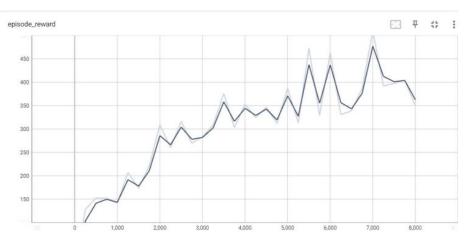
- Buggy environment creation
- Logic aptly reproduced

6

- Experimental setup on GCP with 16 cores, 104 GB RAM and 1x Tesla T4 GPU
- Train Time: 12 hours for 16,000 training steps.



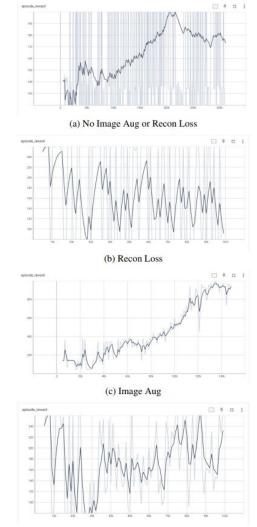
(a) SAC+AE Cheetah Run



(b) SAC+AE Walker Walk

Results2

- > AD(1,0) model outperforms in the Walker Stand task
- AD(0,1) results are negative, average episode reward tends to decrease
- > AD(0,0) increases but optimal is not attained
- AD(1,1) average episode reward oscillates.
 (in the end a small peak is observable)



(d) Image Aug + Recon Loss

Explanation

> Conflicting effects

Image augmentation
=> similar latent vectors for augmented images
=> effect on Decoder

- > Walker_Stand is **Easy** $\leftarrow | \rightarrow$ Models is **Complex**
- Limitations in computing power
 - Limited to 99k frame steps
 - May perform with more training

- Contrastive learning
- Composite image augmentations
- Robustness under background noise

