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1. INTRODUCTION

Sample-efficient deep reinforcement learning (RL) algo-
rithms capable of directly training from image pixels would
open up many real-world applications in control and robotics.
However, simultaneously training a convolutional encoder
alongside a policy network is challenging when given limited
environment interaction, strong correlation between samples
and a typically sparse reward signal. There have been naive
attempts to use a large capacity encoder which resulted in se-
vere over-fitting and smaller encoders produce impoverished
representations that limit task performance.

However, training an agent to solve control tasks di-
rectly from high-dimensional images with model-free re-
inforcement learning (RL) has proven difficult. Instead a
promising approach is to learn a latent representation (zt)
together with the control policy. However, even in this case
fitting a high-capacity encoder using a scarce reward signal
is sample inefficient and leads to poor performance. Prior
work has shown that auxiliary losses, such as image recon-
struction loss (i.e. using a decoder to recreate the image
and track the difference between input and output images),
weight regularization, noise injection[1], or various forms of
auto-encoder[2] can aid efficient representation learning. In
additional to this RL, reconstruction objectives[3] or alternate
tasks are often used [4]. Though, these objectives alone are
unrelated to the task at hand, thus have no guarantee of in-
ducing an appropriate representation for the policy network.
Another drawback is that incorporating reconstruction loss
into an off-policy learning algorithm often leads to training
instability. However, Yarats et al. [5] explored the underlying
reasons of this training instaility and identified variational
autoencoders, used by previous investigations, as the cause
of the divergence. Following these findings, they proposed
effective techniques (SAC+AC) to improve training stabil-
ity. This resulted in a simple approach capable of matching
state-of-the-art model-free and model-based algorithms on
MuJoCo control tasks. Furthermore, their approach demon-
strated robustness to observational noise, surpassing existing
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approaches in this setting.
Data augmentation methods have proven highly effective

in vision and speech domains, where output-invariant pertur-
bations can easily be applied to the labeled input examples.
Surprisingly, data augmentation has received relatively little
attention in the RL community. Outperforming the previous
work [5], recently, it has been shown in [6] that data aug-
mentation techniques, commonplace in Computer Vision but
not in RL, are also important for achieving the state-of-the-art
performance in image-based RL.

In this paper, we first explore the reproducibility of SAC-
AE algorithm given in [5]. With optimal hyperparameter set-
tings, the model is quite slow and takes excessive amount of
memory as well as time to get reach optimal reward values
even with a machine setup of 104GB RAM and 1xTesla T4
GPU. We scrutinize the code to check the logical equivalence
with the proposed algorithms in the paper, and run for 16,000
training steps on the aforementioned machine (took around
18 hours) to verify the code and mention the errors and obser-
vations in Section 4.1.

Secondly, we implement our model (AD) with the cen-
tral idea to combine the two aforementioned ideas of (1) Data
Augmentation (based on the work in [6; 7]), and (2) Auxiliary
losses, in particular Image Reconstruction (based on the work
in [5]). We aim is to use standard image transformations to
perturb input observations, as well as incorporate image con-
struction loss by adding a decoder to the Auto-encoder, so
that different transformations of the same input image have
similar Q-function values. We run our experiments on the
four possible variations of AD-model (AD(0,0), AD(0,1),
AD(1,0), AD(1,1)) by adding/removing data-augmentation
and reconstruction-losses. Moreover, we employ DDPG as
employed by [7] (first defined in [8]). This is much faster
compared to SAC and we compare all the 4 variations ofAD-
model by running over 100,000 training steps. We record our
observations and possible explanations in Section 4.2.

2. RELATED WORKS

Efficient learning from high-dimensional pixel observations
has been a problem of paramount importance for model-free
RL. While some impressive progress has been made apply-
ing model-free RL to domains with simple dynamics and dis-



crete action spaces [9], attempts to scale these approaches to
complex continuous control environments have largely been
unsuccessful, both in simulation and the real world. A glar-
ing issue is that the RL signal is much sparser than in super-
vised learning, which leads to sample inefficiency, and higher
dimensional observation spaces such as pixels worsens this
problem.

Now we take a look at the recent work that has been done
in the creation and improvement of sample-efficient contin-
uous control methods that observe high-dimensional images.
All of the work has been done by Yarats et al.

2.1. SAC+AE

In [5], the authors first try to understand why previous ap-
proaches of adding an autoencoder to model-free RL ap-
proaches, with a focus on off-policy methods, did not work,
they then confirm the vitality of pixel reconstruction loss
for learning a good representation, specifically when trained
jointly. Based on these findings, they recommended a simple
and effective autoencoder-based off-policy method that can
be trained, and called the model, SAC+AE.

The model is based on the Soft Actor-Critic model, which
uses the maximum entropy framework. At each iteration SAC
performs soft policy evaluation and improvement steps. The
policy evaluation step fits a parametric Q-function Q(st,at)
using transitions sampled from the replay buffer D by mini-
mizing the soft Bellman residual

J(Q) = E(st,at,rt,st+1)∼D

[(
Q(st,at)− rt − γV̄ (st+1)

)2]
The target value function V̄ is approximated via a Monte
Carlo estimate of the following expectation

V̄ (st) = Eat∼π

[
Q̄(st,at)− α log π(at|st)

]
where Q̄ is the target Q-function parameterized by a weight
vector obtained from an exponentially moving average of
the Q-function weights to stabilize training. The policy im-
provement step then attempts to project a parametric policy
π(at|st) by minimizing KL divergence between the policy
and a Boltzmann distribution induced by the Q-function using
the following objective

J(π) = Est∼D
[
DKL(π(·|st)||Q(st, ·))

]
where Q(st, ·) ∝ exp{ 1αQ(st, ·)}.

For modelling the reconstruction loss, the authors then
adopt the RAE approach of [10] which imposes a L2 penalty
on the learned representation zt and weight-decay on the de-
coder parameters.

J(RAE) = Eot∼D
[
log pθ(ot|zt) + λz||zt||2 + λθ||θ||2

]

They also prevented the actor’s gradients from updating the
convolutional encoder. Unfortunately, this slowed down sig-
nal propagation to the encoder, and thus they found it im-
portant to update the convolutional weights of the target Q-
function faster than the rest of the network’s parameters. They
therefore employed different rates τQ and τenc (with τenc >
τQ) to compute the Polyak averaging over the corresponding
parameters of the target Q-function.

2.2. DRQ

In [11], the authors propose the use of image augmenta-
tion for model-free reinforcement learning. They suggest
that use of image augmentation enables more robust learn-
ing. However their method did not include any auxiliary
losses or pre-training. They used common image augmenta-
tion techniques used in computer vision tasks, and observed
that it resulted in significant boost in SAC’s performance
on DeepMind control suite. Their approach of using image
augmentation is very flexible and simple to include in any
model-free algorithm. They also demonstrated the simplicity
by applying their method with DQN[9] and improved perfor-
mance in terms of total training required to reach competitive
results on Atari 100k [12] benchmark.

2.3. DRQ:v2

DRQ:v2 was an extension to DRQ [11]. They identified bot-
tlenecks in their approach such as as replay buffer manage-
ment, data augmentation processing, batch size, frequency of
learning updates, and improved upon them. They used DDPG
algorithm[8] for demonstration of their technique, added pos-
sibility of using multi-step return, added bilinear interpola-
tion, introduced an exploration schedule and improved hyper-
parameters.

3. APPROACH

3.1. Reproducing SAC+AE

We test the reproducibility of the model proposed in [5], as
we would later submit our findings to ML Reproducibility
Challenge 2021. We consider the same model structure and
value of hyperparameters as considered in the original paper
[5]. An overview of all the hyper parameters is depicted in
Table 4 of [5].

3.2. AD-model

We now present our approach for the AD-model, which is
based on using image reconstruction loss as in [5] and using
image augmentation as in [7].

The basic setup is shown in Figure 1, where we have the
following components - 1) Encoder, 2) Decoder, 3) Augmen-
tation unit, 4) Actor, 5) Critic. The Actor and Critic are ac-



Algorithm 1 AD(1,1)-Algorithm.
Inputs:
fξ, πϕ, Qθ1 , Qθ2 : parametric networks for encoder, policy, and Q-functions respectively.
aug: random shifts image augmentation.
σ(t): scheduled standard deviation for the exploration noise
T , B, α, τ , c: training steps, mini-batch size, learning rate, target update rate, clip value.
Training routine:
for each timestep t = 1..T do

σt ← σ(t) ▷ Compute stddev for the exploration noise
at ← πϕ(fξ(xt)) + ϵ and ϵ ∼ N (0, σ2

t ) ▷ Add noise to the deterministic action
xt+1 ∼ P (·|xt,at) ▷ Run transition function for one step
D ← D ∪ (xt,at, R(xt,at),xt+1) ▷ Add a transition to the replay buffer
UPDATECRITIC(D, σt)
UPDATEACTOR(D, σt)
UPDATEDECODER(D, σt)

end for
procedure UPDATECRITIC(D, σ)
{(xt,at, rt:t+n−1,xt+n)} ∼ D ▷ Sample a mini batch of B transitions
ht,ht+n ← fξ(aug(xt)), fξ(aug(xt+n)) ▷ Apply data augmentation and encode
at+n ← πϕ(ht+n) + ϵ and ϵ ∼ clip(N (0, σ2)) ▷ Sample action
Compute Lθ1,ξ and Lθ2,ξ ▷ Compute critic losses
ξ ← ξ − α∇ξ(Lθ1,ξ + Lθ2,ξ) ▷ Update encoder weights
θk ← θk − α∇θkLθk,ξ ∀k ∈ {1, 2} ▷ Update critic weights
θ̄k ← (1− τ)θ̄k + τθk ∀k ∈ {1, 2} ▷ Update critic target weights

end procedure
procedure UPDATEACTOR(D, σ)
{(xt)} ∼ D ▷ Sample a mini batch of B observations
ht ← fξ(aug(xt)) ▷ Apply data augmentation and encode
at ← πϕ(ht) + ϵ and ϵ ∼ clip(N (0, σ2)) ▷ Sample action
Compute Lϕ ▷ Compute actor loss
ϕ← ϕ− α∇ϕLϕ ▷ Update actor’s weights only

end procedure
procedure UPDATEDECODER(D, σ)
{(xt)} ∼ D ▷ Sample a mini batch of B observations
henc
t ← fξ((xt)) ▷ Apply the encoder on data

xdec
t ← f−1

ξ ((henc
t )) ▷ Apply the decoder on encoded data

Compute Llatent by averaging over all pixels of henc
t ▷ Compute latent loss

Compute Lrecon ← MSE(henc
t ,xdec

t ) ▷ Compute image reconstruction loss by mean squared error between
reconstructed and original image

Compute LAE ← Lrecon + λ · Llatent ▷ Compute total reconstruction loss
ξ ← ξ − α∇ξLAE for both decoder and encoder params ▷ Update actor encoder and decoder weights

end procedure

cording to the DDPG Framework. In our setup we can choose
to either keep or remove the augmentation and decoder, which
gives us four variations which we refer asAD(0,0),AD(0,1),
AD(1,0) and AD(1,1) to indicate whether these components
are included in model or not. We now describe the structure
of the components in detail.

Image Augmentation: We use random shifts for image
augmentation. Precisely, the 84x84 images are first padded
by 4 pixels (by repeating the boundary pixels), then a random
8484 section of it is picked, which effectively is similar to a

random shift of the original image. As in [7], bilinear inter-
polation is also done (where each pixel is replaced by average
of the four neighbouring pixels).

Image Encoder: The image encoder is used to embed the
observation (the image) into a low-dimensional latent repre-
sentation using convolution layers. The encoder consists of
four convolutional layers with 32 filters and kernel size of
3x3. Each of these layers is followed by ReLU activation
function. The first layer has stride of 2, while the other layers
have stride of 1. This structure is same as used in [7].



Fig. 1. Overview of AD-model

Image Decoder: The image decoder network is symmet-
ric to encoder except that ConvTranspose2d layers are used.

Actor: The actor network consists of two components,
trunk and policy network. The trunk is a simple network with
a dense layer followed by normalization after which tanh ac-
tivation function is applied. The trunk network transforms the
input latent vectors to vector which we call as feature vector,
which is input to the policy network. Following DDPG prin-
ciples, the policy network outputs a vector of dimension same
as that of action space. We call this vector as the mean vector,
and use a fixed value as standard deviation to get a multivari-
ate gaussian distribution over the action space which gives us
a stochastic policy. The policy network consists of a single
hidden layer with dimension of 1024.

Critic: The critic network has a trunk and Q networks.
The structure and purpose of the trunk is same as that for ac-
tor, however the trunk is different for both in the sense that
this component is not shared between Actor and Critic. The
critic consists of a Q-network and a target network, where pe-
riodically the weights of target network are updated by Polyak
averaging. The Q-network take input of size of feature vec-
tor + size of action space as input, and output a single value
which is the approximation for the q value for the given state
and action. The loss functions involved are:

Lθk,ξ(D) = Eτ∼D
[
(Qθk(ht,at)− y)2

]
∀k ∈ {1, 2}, (1)

Lϕ(D) = −Ext∼D
[
min
k=1,2

Qθk(ht,at)
]
, (2)

LAE(D) = E⋊t∼D
[
MSE(ot, zt) + λz||zt||2

]
(3)

4. RESULTS

As clear from previous sections, we perform two different
tasks (1) Reproduce SAC+AE [5], and (2) Experiment with
our implementation of combination of Image Augmentation
and Image Reconstruction Loss in DDPG. Our observations,
results and possible explanations are mentioned in the next
two subsections.

4.1. Reproduce SAC+AE

(a) SAC+AE Cheetah Run

(b) SAC+AE Walker Walk

Fig. 2. Reproduced results from SAC+AE on two different
tasks.

We begin with [5] as a base and reproduce the SAC+AE
technique implemented in the paper. As a part of results for
reproducibility challenge, we provide the following conclu-
sions:

• The first command to create the environment is buggy
and requires hefty amounts of debugging. Instead we
manually installed all the versions of dependencies.

• Logic conveyed in the paper is aptly implemented in the
code as well. (We provide a schema of steps to follow
to manually setup the environment in our code)

• With our current experimental setup on GCP with 16
cores, 104 GB RAM and 1xTesla T4 GPU, the experi-
ment took more than 12 hours to simulate 16,000 train-
ing steps. So it is hard to compare with the original
results of the paper, since their results were over 106

order of training steps.

The reproduced results for the two consider tasks of (1)
Cheetah Run, and (2) Walker Stand are as depicted in Fig-
ure 2.



(a) No Image Aug or Recon Loss

(b) Recon Loss

(c) Image Aug

(d) Image Aug + Recon Loss

Fig. 3. Our Experimental results of different combinations
of Image Augmentation and Reconstruction Loss techniques.
We use an Easy Task of Walker Stand as a benchmark to com-
pare all the models.

4.2. AD-model

Now we analyze our implementation of four AD-models on
Walker Stand task for 99,000 training steps. Evaluation is
done over 1000 episodes after ever 10,000 training steps.

Figure 3 depicts the episode rewards over our four vari-
ations of AD-model. Also we can observe the final episode
rewards at the end of 97,000 training steps, for both evalua-
tion as well as training in Table 1.
We draw the following conclusions based on our experimen-
tal outputs from Figure 3 and Table 1:

• Out of all four models, the AD(1,0) model (Fig-
ure 3(c)) outperforms in the Walker Stand task.
From Table 1 as well, it clear that by the end of our
training, maximum reward corresponds to AD(1,0).

• In AD(0,1) (Figure 3(b)) i.e. the model with recon-
struction loss and a decoder added to the DDPG, the re-
sults are negative, as the average episode reward tends
to decrease with time.

• From Figure 3(a), we can see the average expected re-
ward growing with time for AD(0,0) i.e. the model
with no image augmentation or reconstruction. How-
ever, the highest value (optimal) is not attained in the
considered training time.

• For AD(1,1) (Figure 3(d)), i.e. the model with both
image augmentation and image reconstruction loss on
DDPG, the values of average episode reward while
training, tends to oscillate with great variation. How-
ever, by the end a small peak in the values is observable.

One possible reason for the aforementioned observations
might be that image augmentation and reconstruction loss are
although good strategies individually, they have conflicting
effects on the encoder. Use of image augmentation would
encourage learning similar latent vectors for augmented im-
ages, while if the latent representation for the normal and
augmented images are similar, then image reconstruction loss
will suffer as the decoder will not decode the latent vector
correctly as the original and augmented image have similar
latent vector.

Another possible for the aforementioned observations
might be that the model considered is Easy and using com-
plex models such as AD(1,1) i.e. using both image aug-
mentation and a decoder incorporating image reconstruction
loss may turn out to be too complex for an easy task like
walker stand.

Finally, our experiments were limited to 99k frame steps,
therefore some variation may be better but may require more
training.



Model Episode Reward
Eval Train

AD(0,0) 241.2235953 363.5182619
AD(0,1) 155.6814344 266.1268151
AD(1,0) 503.7203478 555.4227242
AD(1,1) 269.6645507 265.9363906

Table 1. A comparison of Episode Reward Values on evalua-
tion and training at the end of 97k training steps. The evalua-
tion is done on 1000 episodes after every 10k training steps.

5. CONCLUSION AND FUTURE DIRECTIONS

From our experiments, we observe that the combining the
techniques of image augmentation and auxiliary losses like
image reconstruction loss does not perform good with Easy
tasks such as walker stand. However, because of system re-
strictions, these observations are totally based on observations
from seemingly less number of training steps ( 105) compared
to 106 steps for which both the base paper [11], [7] ran their
experiments.

A major question that using DRQ (Image Augmentation)
piques is about “How can we learn good representations from
unlabeled data?”. In recent years, we have seen an explosion
of unsupervised Deep Learning methods based on these prin-
ciples. In fact, some self-supervised contrastive-based rep-
resentations already match supervised-based features in lin-
ear classification benchmarks. So another future replacement
of DRQ might be Contrastive Unsupervised learning (CURL
[13]) and is worthy to explore. One more approach can be
trying for a combination of image augmentation techniques
on contrary to [6] which uses only RandomShift. We can
also test the robustness of these models by introducing some
background noise in the images as well.
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