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Problem                Definition



BNPG (Binary Networked Public Goods) Games

Given:
- Network as Undirected graph with players as vertices

- Each player i can either invest (x
i 
= 1) or not (x

i
=0)

- Utility of ith player :

where :
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  := Strategy played by 

ith player 
x = (x1, ..., xn) := Joint 
pure strategy profile of 
all players



PSNE (Pure Strategy Nash Equilibria) of BNPG Games

A Joint Pure Strategy Profile x ∈ {0, 1} n  such that:

- U
i
(x

i
, n

i
x ) > U

i
( 1- x

i
, n

i
x ), or 

- U
i
(x

i
, n

i
x ) = U

i
(1 - x

i
, n

i
x ) and x

i
 = 1

In󰉏e󰈼t NotI󰈝󰉐󰈩s󰉃



 Who Invests??   PSNE Classes 

  all:  every player invests i.e. x = (1, 1, …, 1)

  = S: only set S invests 

  ⊇ S: superset of set S invests

 ≥ r: at least r players invest 

We t󰉒󰈡 󰇽󰈹e 
in󰉏󰈩󰈼t󰈏󰈝󰈈!!



What’s the Problem then???

- A few “diligent” workers may bear all the load

- Detrimental for a long-term perspective

- Turns out to be unfair

Not ENOUGH 
to find PSNE 

of BNPG

We 󰈎n󰉏󰇵󰈼t !!

Fre󰈩-󰈗󰈢a󰇶󰈩r󰈻...

Pol󰈎󰇹󰉙m󰇽󰈔e󰈹
(Gaw󰇷)

Thi󰈻 󰈎󰈼 n󰈢󰉃 
fa󰈎󰈸...



Network Modifications: Tackling Unfairness

A central mechanism (algorithm) ensuring:

- A specified set of players invest

- Break existing connections (delete edges)

- Make new connections (add edges)

-  Bribe them!!!
Edge Edition!!

Addition 
+

 Deletion 



gi(
.) : what forms it can take?

- Captures how a player behaves w.r.t increasing investment 
of its neighbors

- Non − negative, Non − decreasing

Can be :
- general 
- convex    (increasing returns)
- concave (diminishing returns)
- sigmoid (first increasing then diminishing returns)



Investment Degree Set (Di)

A unique set D
i
 ⊆ {0, 1, ..., n − 1} such that:

-  x
i
 = 1 is a best response  ⇔ n

i
x  ∈  Di 

Interesting property:

- g
i
 is concave  ⇔ D

i
 is downward-closed interval

- g
i
 is convex ⇔  D

i
 is upward-closed interval

- g
i
 is sigmoid ⇔ D

i
 is an interval

Mak󰈩 󰈚󰇵 
in󰉏󰈩󰈼t!!!



NDDS(P,X) (Network Design for Degree Sets) 
Given : 

- BNPG instance := (Graph & utilities U
i∈[n] 

)
- D

i
 := investment degree sets for all players i∈[n]

- γ
e∈nC2

:= Edge costs
- X := desired PSNE class  (all,   = S,  ⊇ S,  ≥ r)

- P := Property of g
i
(.) (convex, concave, sigmoid, or general)

- k := budget k

Goal :
Decide whether there exists an edge set S with:

- ∑
e∈EϴS

 γ
e
 ≤ k

- ∃ I ∈ X of investing players such that in the modified graph 
G’ (V, E’ = E ϴ S) 

|N
i 

G’ ∩ I| ∈ D
i
 ∀i ∈ I

|N
i 

G i ∩ I| ∉ D
i
 ∀i ∉ I. 



Homogeneity: NDDSα (P,X)

NDDS (P,X) with extra constraint:

α = α
i
 = min{z | s.t. z ∈ Di}



I ha󰉏󰈩 N󰈢 
Bud󰈇󰈩󰉄...

No Budget !! (k=0)

γ
e∈nC2

 > 0

NDDS reduces to :

- Finding PSNE for BNPG

- Without any modifications allowed



Preliminaries

h󰈚󰈛...



Parameterized Algorithms

Parameterized problem : Language L ⊆ Σ∗ × N, where Σ is a fixed, finite 
alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter.

Fixed Parameter Tractable [FPT] : Running time f(k)nc  

Slice-wise Polynomial [XP] : Running time f(k)ng(k) 

Prelims...

Parameterized 
Algorithms

Wha󰉃’󰈼 k??
How 󰉃󰈡 󰇸󰇽l󰇹u󰈘󰈀t󰇵 i󰉃 

be󰇾󰈡󰈹󰇵ha󰈝󰇶???



Parameterized Hardness

Para-NP-Hard : NP-Hard for a constant value of parameter

W[t]: There is a parameterized reduction to WCS[C
t,d

] for some d > 1

W[t]-Hard: Every problem in W[t] can be reduced to P

Prelims...

Parameterized 
Hardness

N󰈪-󰈿ar󰇷 fo󰈸 󰈀 
“Sli󰇹󰈩” of 󰉃󰈋󰈩 

pa󰈸󰈀󰈛󰇵te󰈸

W󰉑󰈟??
We󰈎g󰈊󰉄󰇵d 
Cir󰇹󰉉󰈏󰉄 

Sat󰈎󰈻fi󰇽󰇻il󰈎󰉃󰉙 



Parameters Under Consideration

- k := input budget
- r := NDDS (P,  r)
- α := min

v∈V[G]  
lower bound(D

v
)

- δ := diameter of input graph
- n

U
 := number of distinct utility functions

- tw := treewidth of graph*
- D := max

v∈V[G]
 |D

v
|

- ∆ := max degree of input graph’
- vc      :=       vertex cover number



Our Results
Skipping over the Prior Results . . .

PSNE of BNPG

Parameterized 
Complexity

Network 
Modifications

PSNE@BNPG
(Game Theory)

Parameterized 
Complexity

Network 
Modifications

(Graph Theory)

NDDS



Summary of Our Results



Summary of Our Results



Hardness Results

Meh! I󰉃 
is 󰈊󰈀󰈹d!!



Result1 : NDDS (general, all)  -  W[1]−C w.r.t k

Thm. The problem of NDDS (general, all) is W[1]−Complete w.r.t the parameter k (budget). 

Even when the input graph is unweighted

Reduction

r-regular Clique

NDDS 
(general, all)

r-regular Clique
W[1]-Complete

Black Box
NDDS 

(general, all) 

W[1]-C

w.r.t the 
parameter k



r-regular Clique

Input :  (G(V, E), k) 

➢ G is r-regular undirected graph

Goal : Decide whether there exists a k-clique as a subgraph of G

Result1 : NDDS (general, all)  -  W[1]−C w.r.t k...



Main Reduction

Result1 : NDDS (general, all)  -  W[1]−C w.r.t k...



Result2 : NDDS (convex, ≥ r)  -  W[1]−C w.r.t (k + r + α)

Thm.  NDDS (convex, ≥ r) is W[1]-hard with respect to the parameter k + r + α.

W[1]-hard w.r.t parameter k+r even when α = 3 even when the graph is unweighted.

Reduction

Edge-k-Core

NDDS 
(convex, ≥ r) 

Edge-k-Core
W[1]-Hard

w.r.t k+r  ( α = 3)

Black Box
NDDS 

(convex, ≥ r) 

W[1]-H

w.r.t 
k + r + α



Edge-k-Core

Input :  (G(V, E), k) 

- Simple, undirected graph G = (V, E)
- Integers k, α, and r

Goal : Decide if there exists H ⊆ V[G] such that:

- Adding at most k edges to G
- In modified graph G’, every v ∈ H has deg

G’[H]
 [v]  ≥ α

Result2 : NDDS (convex, ≥ r)  -  W[1]−C w.r.t k...



Main Reduction

Result2 : NDDS (convex, ≥ r)  -  W[1]−C w.r.t k...



Result3 : NDDS (sigmoid, ≥ r)  -  para-NP-hard w.r.t r+k

Thm.  NDDS (sigmoid, ≥ r) is para-NP-hard w.r.t parameter r + k 

even when max(|D
v
|) = 1, k=0, and the graph is unweighted

Reduction

r-regular Subgraph

NDDS 
(sigmoid, ≥ r) 

r-regular Subgraph
para-NP-hard 

w.r.t  r

Black Box
NDDS 

(sigmoid, ≥ r) 

para-NP-hard

w.r.t 
r+k



r-regular Subgraph

Input :  (G(V, E), r) 

- Simple, undirected graph G = (V, E)
- Positive Integer r

Goal : Decide whether there exists a H ⊆ V[G], such that-

- Subgraph G[H] is r-regular

Result3 : NDDS (sigmoid, ≥ r)  -  para-NP-hard w.r.t r...



Idea of Reduction

Result3 : NDDS (sigmoid, ≥ r)  -  para-NP-hard w.r.t r...



Algorithmic Results

X󰈪/F󰈪󰈙
Al󰈇o󰈹󰈎t󰈊󰈛s



Result4 : XP w.r.t k

Thm. 

 All versions of NDDS can be solved in XP time nO(k)

We already:
- Established W[1]-Completeness results w.r.t k
- Ruling out any FPT-Algorithm
- Designed the next best : XP



Introducing Homogeneity



Result5: Deficiency

Thm.  For a solution subgraph H:

df>0 df=0

Bad Edge

df=0 df=0

Useless Edge

df>0 df>0

Good Edge



Result6: The Reduction to Edge-k-Core

Thm. 

 NDDS
α

(convex, > r)   ⩽
FPT

   Edge-k-Core



Result7: Deficiency & Forests

Thm.  For a tree  H:

=

Thm. 

 NDDS
α

(convex,  ≥ r) is solvable in time O(αn2 ) for  forests.

Thm. 

NDDS
α

(convex, ≥ r)  admits an FPT algorithm w.r.t.  tw+α.



Result8: FPT w.r.t. vertex cover

We:
- Established W[1]-Completeness results w.r.t r+k+α
- Designed FPT for combination of params tw+α, vc 
- Designed the next best : XP

Thm. 

NDDS
α

(convex, ≥ r)  admits a                                              FPT algorithm  



Conclusions & Significance of Our Work

➢ Notched up the results taking into account the parameterized complexity 

w.r.t key natural as well as structural parameters

➢ Crucial role in computer science, economics, game theory and network 

design

➢ Lower Bound by W[1]-hardness

➢ Upper bound  by XP, FPT-algorithms, making the analysis complete



Future Directions

➢ Approximate, i.e., ε-PSNE for the problem...

➢ More structural parameters like FVS, FAS...

➢ Problem formulation on line-graph of the input graph...

➢ XP algorithms w.r.t treewidth or maximum degree...

➢ Color/Chromatic coding

➢ Parameterization by distance to trees, paths or cluster graphs…

➢ The 2-approximation Heuristic

Fut󰉉󰈸󰇵 󰈘o󰈡k󰈻 
so 
ap󰈥󰈹󰈡x󰈏󰈚a󰉄󰈩



Practical Implications

● Modeling Behavioral Response to Vaccination 
Using Public Goods Game by Ben-Arieh et al.

● Vaccination as a Social Contract by Korn et al.

Game Theory of Social Distancing in 
Response to an Epidemic  by Rulega

Election Control in Social 
Networks using Edge edition 
by Castiglioni et al.

Manipulating opinion 
diffusion in social 
networks  by Bredereck 
et al.

Maximizing spread 
of cascades using 
Network Design 
by Sheldon et al.
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