On Parameterized Complexity of Network Design for Binary Networked Public Goods Games

M. Tech Project Amatya Sharma

Mentor : Dr. Palash Dey Indian Institute of Technology Kharagpur

BNPG (Binary Networked Public Goods) Games

Given:

- Network as Undirected graph with players as vertices
- Each player i can either invest $(x_i = 1)$ or not $(x_i = 0)$
- Utility of ith player :

$$U_i(x) = U_i(x_i, n_i^{\times}) = g_i(x_i + n_i^{\times}) - c_i x_i$$

x, := Strategy played by
ith player
x = (x1, ..., xn) := Joint
pure strategy profile of
all players

- n_i^x := #neighbors investing
- g_i(.) := non negative non decreasing

PSNE (Pure Strategy Nash Equilibria) of BNPG Games

A Joint Pure Strategy Profile $x \in \{0, 1\}^n$ such that:

- $U_i(x_i, n_i^{\times}) > U_i(1 x_i, n_i^{\times}), \text{ or }$
- $U_i(x_i, n_i^{\times}) = U_i(1 x_i, n_i^{\times})$ and $x_i = 1$

Who Invests?? PSNE Classes

- **all:** every player invests i.e. x = (1, 1, ..., 1)
- = S: only set S invests
- \supseteq S: superset of set S invests
- ≥ r: at least r players invest

What's the **Problem** then???

- A few "diligent" workers may bear all the load
- Detrimental for a long-term perspective
- Turns out to be unfair

Not ENOUGH to find PSNE of BNPG

Network Modifications: Tackling Unfairness

A central mechanism (algorithm) ensuring:

- A specified set of players invest
- Break existing connections (delete edges)
- Make new connections (add edges)
- Bribe them!!!

g_i(·) : what forms it can take?

- Captures how a player behaves w.r.t increasing investment of its neighbors
- Non negative, Non decreasing

Can be :

- general
- convex (increasing returns)
- concave (diminishing returns)
- sigmoid (first increasing then diminishing returns)

Investment Degree Set (D_i)

A unique set $D_i \subseteq \{0, 1, ..., n - 1\}$ such that:

- $x_i = 1$ is a best response $\Leftrightarrow n_i^{\times} \in Di$

Interesting property:

- g_i is concave \Leftrightarrow D_i is downward-closed interval
- g_i is convex \Leftrightarrow D_i is upward-closed interval
- g_i is sigmoid \Leftrightarrow D_i is an interval

NDDS(P,X) (Network Design for Degree Sets)

Given:

- γ_{e∈nC2} - Χ

- P - k

- BNPG instance:=(Graph & utilities $U_{i \in [n]}$) D_i :=investment degree sets for all players $i \in [n]$
 - := Edge costs
 - := desired PSNE class (all, $= S, \supseteq S, \ge r$)
 - := Property of g_i(·) (convex, concave, sigmoid, or general)
 - := budget k

Goal:

Decide whether there exists an edge set S with:

- $\sum_{e \in E\Theta S} \gamma_e \le k$
- $\exists I \in X$ of investing players such that in the modified graph $G'(V, E' = E \Theta S)$

Homogeneity: NDDS^α (P,X)

NDDS (P,X) with extra constraint:

 $\alpha = \alpha_i = \min\{z \mid s.t. z \in Di\}$

No Budget !! (k=0)

 $\gamma_{e \in nC2} > 0$ NDDS reduces to :

- Finding PSNE for BNPG
- Without any modifications allowed

Preliminaries

Parameterized Algorithms

Parameterized problem : Language $L \subseteq \Sigma^* \times N$, where Σ is a fixed, finite alphabet. For an instance $(x, k) \in \Sigma^* \times N$, k is called the parameter.

Parameters Under Consideration

- k := input budget
- **r** := NDDS (P, **r**)
- α := min_{v \in V[G]} lower bound(D_v)
- δ := diameter of input graph
- n_u := number of distinct utility functions
- tw := treewidth of graph*
- D := $\max_{v \in V[G]} |D_v|$
- Δ := max degree of input graph'
- vc := vertex cover number

Skipping over the Prior Results ...

Our Results

Summary of Our Results

Problem Variant	Parameter	Result
all, general	k (budget)	W[1]-Complete Theorem 15
$\{=S, \supseteq S, \ge r\}$, general	k	W[1]-Complete Theorem 16
$\{\supseteq S, \ge r\}$, concave	k	W[1]-Complete Theorem 17
$\{\supseteq S, \ge r\}$, sigmoid	k	W[1]-Complete Theorem 18
$\geqslant r$, {concave, convex, sigmoid}	r+k	W[1]-Complete Theorem 19
\geqslant r, convex	$k + r + \alpha$	W[1]-Hard Theorem 23
$\geqslant r$, sigmoid	r+k	para-NP-hard Section 3.1
$\{ \ge r, \supseteq S \}$, general	I	W[2]-Hard Observation 2
$\{ \geqslant r, \ \supseteq S \}, \ {\rm general}$	n - I	W[2]-Hard Observation 2
$\{ \ge r, \supseteq S \}$, general	treewidth	W[1]-Hard Observation 3
$\{ \geqslant r, \ \supseteq S \}, \ {\rm general}$	Δ	para-NP-hard Observation 4
$\{ \ge r, \supseteq S \}$, general	(δ, n_u)	para-NP-hard Observation 6, 5
{-any-, -any-}, -any-	k	$n^{O(k)}$ XP Theorem 28
{-any-, -any-}, -any-	k	n ^{O(K)} XP Theorem 28

Summary of Our Results

1

Homogeneous Variant: $NDDS^{\alpha}$			
$\geqslant r, \{ {\rm convex}, {\rm sigmoid}, {\rm general} \}$	$k + r + \alpha$	W[1]-Hard Corollary 24	
$\geqslant r, \{ {\rm convex}, {\rm sigmoid}, {\rm general} \}$	r + k	para-NP-hard Corollary 27	
$c = \left\lceil \frac{1}{2} \sum_{\nu \in V(H)} \mathrm{df}(\nu) \right\rceil$		$\mathbf{k} \in [\mathbf{c}, 2\mathbf{c}]$ Theorem 30	
$\mathbb{N}DDS^{\alpha}(\operatorname{convex}, \geq r) \leq_{FPT} EDGE-K-CORE$		Theorem 31	
Forests: $\geq r$, convex	α	$O(\alpha n^2)$ Observation 8	
$\geqslant r$, convex	vc	FPT Observation 9	
$\geqslant r$, convex	$tw + \alpha$	FPT Observation 10	

Hardness Results

Result1 : NDDS (general, all) - W[1]-C w.r.t k

Result1 : NDDS (general, all) - W[1]-C with k...

r-regular Clique

Input : (G(V, E), k)

➤ G is r-regular undirected graph

Goal: Decide whether there exists a k-clique as a subgraph of G

Main Reduction

$$\begin{split} \triangleright \ V'[G'] &= V[G] \cup Z, \text{ where } Z = \{z_1, ..., z_k\}; \\ \triangleright \ E'[G'] &= E[G] \cup \{(\nu_i, z_j) \mid \forall \nu_i \in V[G], \ , j \in [k]\}; \\ \triangleright \ \gamma_e &= 1, \ \forall e \in E'[G']; \\ \triangleright \ D_{\nu_i} &= \{r - k - 1, \ r + k\}, \ \forall \nu_i \in V[G]; \\ \triangleright \ D_{z_j} &= \{n - k\}, \ \forall j \in [k]; \\ \triangleright \ k' &= k^2 + \binom{k}{2}. \end{split}$$

Result2: NDDS (convex, $\geq r$) - W[1]-C w.r.t (k + r + α)

Thm. NDDS (convex, $\geq r$) is W[1]-hard with respect to the parameter $k + r + \alpha$.

W[1]-hard w.r.t parameter k+r even when $\alpha = 3$ even when the graph is unweighted.

Edge-k-Core

Input : (G(V, E), k)

- Simple, undirected graph G = (V, E)
- Integers $\mathbf{k}, \boldsymbol{\alpha}, \text{ and } \mathbf{r}$

Goal : Decide if there exists $H \subseteq V[G]$ such that:

- Adding at most k edges to G
- In modified graph G', every $v \in H$ has $\deg_{G'[H]}[v] \ge \alpha$

Main Reduction

1.
$$G^* = G$$
 i.e. $V^* = V$ and $E^* = E$;
2. $D_v = \{\alpha, ..., n-1\} \ \forall v \in V^*;$
3. $r^* = r$

4. $k^* = k$

Result3 : NDDS (sigmoid, ≥ r) - para-NP-hard w.r.t r+k

Result3 : NDDS (sigmoid, ≥ r) - para-NP-hard wet r...

r-regular Subgraph

Input: (G(V, E), r)

- Simple, undirected graph G = (V, E)
- Positive Integer r

Goal : Decide whether there exists a $H \subseteq V[G]$, such that-

- Subgraph G[H] is r-regular

Idea of Reduction

- 1. $G^* = G$ i.e. $V^* = V$ and $E^* = E$;
- 2. $D_{\nu} = \{r\} \forall \nu \in V^*;$
- 3. $r^* = r$
- 4. $k^* = 0$
- 5. weight of each edge = 1.

Algorithmic Results

Result4 : XP w.r.t k

Thm.

All versions of NDDS can be solved in XP time $n^{O(k)}$

We already:

- Established W[1]-Completeness results w.r.t k
- Ruling out any FPT-Algorithm
- Designed the next best : XP

Introducing Homogeneity

Result5: Deficiency

Result6: The Reduction to Edge-k-Core

Thm.

NDDS^{α}(convex, > r) \leq_{FPT} Edge-k-Core

1.
$$G^* = G$$
 i.e. $V^* = V$ and $E^* = E$;

2.
$$D_{\nu} = \{ \alpha, ..., n-1 \} \forall \nu \in V^*;$$

3.
$$r^* = r$$

4.
$$k^* = k$$

Result7: Deficiency & Forests

Thm.

NDDS^{α}(convex, $\geq r$) is solvable in time O(αn^2) for forests.

Thm.

NDDS^{α}(convex, \geq r) admits an **FPT algorithm** w.r.t. tw+ α .

Result8: FPT w.r.t. vertex cover

Thm.

NDDS^{α}(convex, \geq r) admits a $2^{\mathcal{O}(vc \cdot 3^{vc})} \cdot n^{\mathcal{O}(1)}$ FPT algorithm

We:

- Established W[1]-Completeness results w.r.t r+k+α
- Designed FPT for combination of params $tw+\alpha$, vc
- Designed the next best : XP

Conclusions & Significance of Our Work

- Notched up the results taking into account the parameterized complexity w.r.t key natural as well as structural parameters
- Crucial role in computer science, economics, game theory and network design
- Lower Bound by W[1]-hardness
- > Upper bound by XP, FPT-algorithms, making the analysis complete

Future Directions

- > Approximate, i.e., ϵ -PSNE for the problem...
- More structural parameters like FVS, FAS...
- Problem formulation on line-graph of the input graph...
- > XP algorithms w.r.t treewidth or maximum degree...
- Color/Chromatic coding
- > Parameterization by distance to trees, paths or cluster graphs...
- The 2-approximation Heuristic

Practical Implications

- Modeling **Behavioral Response to Vaccination** Using Public Goods Game *by Ben-Arieh et al.*
- Vaccination as a **Social Contract** by Korn et al.

Game Theory of Social Distancing in Response to an Epidemic by Rulega Manipulating opinion diffusion in social **networks** by Bredereck et al. global characteristics ndividual characteri

average degree +

% cocial hubr + (but more late as

* degree centrali

* strong ties + weak ties +/-

embeddedness

clustering +/assortativity – (unless network externalitie width of degree distribution +

Election Control in Social Networks using **Edge edition** by *Castiglioni et al.*

Maximizing **spread** of cascades using Network Design by Sheldon et al.

