Min CSPs on Complete Instances

Aditya Anand

by Euiwoong Lee

Amatya Sharma

Abstract

- This talk is about
 - Minimization Constraint Satisfiability Problems on Complete Instances.
- What is new?
 - O(1)-approx for Min-2-SAT on Complete Instances.
 - $n^{O(\log n)}$ time algorithm for k-CSPs, $\forall k \geq 2$.
 - NP-Hardness for 2-CSPs with large alphabet
- Why is this new?
 - Prior best approximation for Min-2-SAT: $O(\sqrt{\log n})$
 - First systematic study on Min-CSPs

CSP example

3-SAT:

- Variables x_1, x_2, \dots, x_n
- Clauses:

$$(x_1 \lor \neg x_3 \lor x_4), (\neg x_4 \lor \neg x_{13} \lor x_7), \dots$$

Clause is unsatisfied iff all literals are false

NAE-3-SAT

Clauses:

$$(x_1, \neg x_3, x_4), (\neg x_4, \neg x_{13}, x_7),...$$

Clause is unsatisfied iff all literals have the same assignment

Many more examples, 3-LIN, 3-AND, 2-SAT, Horn-SAT, SAT...

Constraint Satisfiability Problems

k-CSP:

- n Boolean Variables
- m Clauses with
 - k-variables each clause
 - Predicate $P_i: \{0,1\}^k \mapsto \{sat, unsat\}$ for each clause j

Instance is a k-uniform hypergraph

Objectives

Find an assignment to the variables that...

...satisfies all the clauses?

- Decision CSP
 - SAT, 3-SAT, NAE-SAT, k-Coloring

... maximizes #satisfied clauses

- Max-CSP
 - e.g. Max-Cut, Max-2-SAT, Max-k-SAT, Unique Games

...minimizes #unsatisfied clauses?

- Min-CSP
 - e.g. Min-Uncut, Min-2-SAT, Min-3-SAT

A Brief History about CSPs

Max-CSPs

General Instances

- Applications
 - NP-Optimization
 - Graph Cuts
 - ETH
- Tools
 - Linear, Semi Definite Programming
 - Probabilistically Checkable Proofs
 - Unique Games Conjecture

Optimal* Approximation Algorithms

• Max-3-SAT, Max-3-LIN, Max-CUT, Unique Games [Has01, Kho02, KKMO07]

Structured Instances

Instance is a hypergraph H.

What are some basic structural assumptions?

- Dense Instance
 - H is 'almost' complete, $|E| = \Omega(n^k)$
- Expanding Instance
 - H has some expansion properties

Max-CSPs

Structured Instances

- Tools
 - Random Sampling
 - Convex Hierarchies
 - Regularity Lemmas

Every Max-CSP has a PTAS on dense/expanding instances via any tool

Min-CSPs

General Instances

- Unlike Max-CSPs*, not all Min-CSPs admit O(1)-approx.
- Structural Characterization identifies optimal approximations as one of 1, O(1), polylog(n), poly(n) [KSTW01]

Structured Instances

- Min Uncut & Unique Games
 - O(1)- approximation for on dense/expanding instances [BFdLVK03, KS09, GS11, MdMMN23]
- Fragile CSPs
 - PTAS on dense instances [KS09]
- Min-2-SAT
 - UGC-Hard to get O(1)-approximation

Complete Instances

- Min-k-CSP on complete instance hypergraph is complete
- Every k-tuple of variables is a clause

e.g. Min-3-SAT complete instance on 4 variables:

$$(x_1 \lor \neg x_2 \lor x_3),$$

 $(x_1 \lor \neg x_2 \lor \neg x_4),$
 $(x_1 \lor x_3 \lor x_4),$
 $(x_2 \lor \neg x_3 \lor x_4).$

Motivation

Fine Grained Understanding of Instance Structures

- Connections to DS/ML
 - Correlation Clustering
 - Low rank approximation

- New Algorithmic Techniques
 - Combination of tools for Max-CSPs
 - Random Sampling, Convex Hierarchies, Regularity Lemmas

Our Results

• Min-CSPs on complete instances

Thm. poly(n) time O(1)-approx for Min-2-SAT on complete instances

What about generalizing to Min-3-SAT, Min-k-SAT?

Before approximation, comes decision...

Thm. $n^{O(\log n)}$ time algorithm for decision k-CSP on complete instances

Toy Example 1: Decision 2-SAT

Thm. Any 2-SAT complete instance has O(n) satisfying assignments.

Proof.

- VC-dim $\leq k \Rightarrow \#sets \leq O(n^{k-1})$ [Sau72, She72]
- Elements: n variables
- Every satisfying assignment forms a set
 - Set of all the true variables

[Fed94] all assignments for 2-SAT can be found in time O(n * #satisfying assignments + m)

Corr. All the satisfying assignments can be found in $O(n^2)$ time.

Toy Example 1: Decision 2-SAT

Thm. Any k-CSP complete instance has $O(n^{k-1})$ satisfying assignments.

Unlike 2-CSP, no easy way to find these assignments in polynomial time.

For 3-CSP, we do it in time $n^{O(\log n)}$ and for 4-CSP, k-CSP in general.

Toy Example 2: NAE-3-SAT

• Clause (x, y, z) is unsat iff x,y,z are all assigned the same.

Thm. $O(n^2)$ time algorithm for complete NAE-3-SAT.

- Key Observation:
 - Guess assignment of x, say 1.
 - Both y and z can not be 1
 - 2 SAT constraint $(\neg y \lor \neg z)$
 - Complete instance
 - x has clauses with all n-1 variables
 - 2 SAT constraints for all n-1 variables
 - Complete 2-SAT instance

Idea for 3 SAT

- $(x \lor y \lor z)$ if assignment of x, y is both 0, then z is "fixed" to 1.
- If there is a "good" pair (x, y), that fixes $\Omega(n)$ variables:
 - Guess the pair, guess its assignment.
 - $O(\log n)$ rounds fixes all the variables.
- Otherwise,
 - Obtain a complete 2SAT instance
 - Enumerate all $O(n^2)$ 2SAT assignments.
- Runtime $n^{O(\log n)}$

Our Results

Thm. $n^{O(\log n)}$ time algorithm for k-CSP on complete instances

Thm. Complete Classification of (k,r)-CSP

Thm. poly(n) time O(1)-approx for Min-2-SAT on complete instances

Open Questions

- Poly time algorithm for complete k-CSP?
 - Even complete 3-SAT?
- Approximating Min-k-CSPs?
 - Exact Approximation is hard unless NP⊆BPP
 - Possibly quasi time?
 - $n^{O(\log n)}$ is optimal for (2,poly(n))-CSPs
- More fine-grained characterizations?
 - k-LIN
 - k-AND

Thank you

Registration and travel support for this presentation was provided by National Science Foundation.

Rough

2-SAT Complete Instance on x_2, \dots, x_n