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INTRODUCTION & PRELIMINARIES 

The Gaussian process (GP) is a simple yet powerful probabilistic framework for                       

various machine learning tasks. However, exact algorithms for learning and prediction                     

are prohibitive to be applied to large datasets due to inherent computational complexity.                         

To overcome this main limitation, various techniques have been proposed, and in                       

particular we can classify approximations in scalable GPs into two main categories of                         

local and global approximations. After studying these we focus on automatically                     

constructing Gaussian process models as done in [19] where we try and search over                           

sums and products of kernels and focus to optimize the approximate marginal log                         

likelihood. In this term project we extensively focus ourselves on a rather deeper                         

literature survey on Gaussian Processes and quote essential experimental results only if                       

needed. The reason behind that is Gaussian Process kernels have been studied and                         

experimented on a lot in the last 10 years but unfortunately it is still difficult to find all                                   

the compiled results at one place. 

We first begin with defining the preliminaries and basics of Gaussian Processes. 

Definition of Gaussian Process 

A Gaussian process is a series of arbitrary variables such that there is a joint multivariate                               

distribution in every finite subset of it. It is any distribution over functions such that any                               

finite set of function values f(x1), f(x2), . . . f(xN ) have a joint Gaussian distribution . A                                     

Gaussian process is  specified by its mean and covariance functions. 

Mean function, 

E [f(x)] = µ(x)  

 Covariance function, it is also called kernel. 

Cov [f(x), f(x ′ )] = k(x, x ′ )  

The mean function is zero everywhere because the uncertainty of the mean function is                             

usually taken by adding an extra term to the kernel. 

After considering the mean, the type of the structure that the GP model can capture                             

depends entirely on its kernel. The kernel defines how new data is generalized or                           
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extrapolated, by the model. 

Model Selection 

The essential property of GPs to build models automatically is that, provided a                         

specific model, also known as the evidence, we can measure the marginal probability of                           

a dataset. The marginal likelihood allows the comparison of the models, balancing a                         

model's skill and its fit with the data. It can be used for model selection. 

The Bayes rule for computing the posterior 

P( Ѳ \ X,m) = (p(X,θ\m))/(p(X\m)) = (p(X\θ,m) p(θ\m))/ ( ∫ p(X\θ,m) p(θ\m)dθ)   

                                                                           = (Likelihood x Prior )/(Marginal Likelihood) 

The denominator in the Bayes rule is the marginal likelihood.  

Note that p(X \m) = E​p(Ѳ \m) ​[p(X \ Ѳ ,m)] is the average /expected likelihood under model m. 

 Choose model m that has largest posterior probability 

 m​ ​̂ = arg max​m​ p(m\ X) = arg max​m​  = arg max​m​ p(X\m)p(m) 

If all models are equality likely a priori then m​^ ​= arg max​m ​p(X\m). If m is a hyperparam,                                     

then arg max​m  ​p(X\m) is MLE-II based hyperparameter estimation. 

Predictive Distribution 

Predictive distributions play a central role in statistics and in close areas such as ​Machine                             

Learning. ​We realize that the uncertainty about the exact mean and variance to plug into                             

the predictive formula is unclear.The distribution created by averaging future                   

predictions over the posterior densities of all unknown parameters is called the                       

“predictive density” in Bayesian analysis. 

Predictive distribution(z) = Z f(z|θ)f(θ|x) dθ 

where, x is the observed data andθ is the vector of unknown parameters. Thus f(z|θ) is                                 

the prediction we would make for future data if theta were known exactly, but since it is                                 

not, we average this quantity over f(θ|x), the posterior density ofθ after observing the                             
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data x. 

The above formula is completely general, in that f can be any density or even an                                 

extremely complex model, andθ can represent one, two, or even thousands of unknown                           

parameters. 

Kernel 

A kernel is a two input x, x′ positive-definite function. In this section, x and x′ are                                 

typically vectors in a Euclidean space, but graphs, images, discrete or categorical inputs,                         

or even text may also be represented by kernels. 

Gaussian process models use a kernel to define the prior covariance between any two                           

function values: 

Cov [f(x), f(x′)] = k(x, x′) 

Kernels are also used to specify the similarity between two items. In this case, this is                               

somewhat misleading since the similarity between the two values of the function                       

evaluated on each object. The kernel defines the functions are probable under the GP                           

prior and then determines the general attributes of the model. 

Characterization of Kernels 

A symmetric function k is called positive semi-definite in X if: for every N∈ N, and every                                   

choice  x​1​, · · · , x​N​ ​∈​ X, the matrix K = (k​ij​), where k​ij​ = k(x​i ​, x​j​) is positive semi-definite.  

Theorem. ​ k admits the existence of a map φ : X → H s.t.  

H is a Hilbert space and   k(x, x 0) = φ(x), φ(x 0)​H  

if and only if k is a positive semi-definite symmetric function in X. 

Standard Kernels 

Squared Exponential Kernel 
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the Radial Basis Function kernel, the Gaussian kernel. It has the form: 

k​SE​(​x,x′​) = ​σ​2​exp​(−​(​x−x′​)​2​ ​/  2ℓ​2​) 

The SE kernel has become the actual default kernel for GPs and SVMs. This may be                               

because there are some good properties that it has. . It is universal, and we can integrate                                 

it into most of the functions that we want to. The prior of each function has an infinite                                   

number of derivatives . Also ,it only has two parameters: 

1. The length scale ℓ determines the length of the 'wiggles' in the function. Generally,                           

you will not be able to extrapolate more than ℓ units away from the data. 

2. The performance variance σ2 determines the average distance the function                   

deviates from its average value. Each kernel puts this parameter in front.This is                         

just a scale factor. 

Rational Quadratic Kernel 

 

k​RQ​(​x,x′​) = ​σ​2​(​1​+​(​x−x′​)​2​2​αℓ2​)​−​α 

This kernel is the equivalent of adding several SE kernels of different scales of length                             

together. Therefore, GP priors expect this kernel to see features that differ smoothly over                           

several scales of length. . The parameter α determines the proportional weighting of                         

combinations of large and small scales.. When  α→∞, the RQ is identical to the SE. 
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In order to introduce a complex/higher level to the kernels, we can even try multiplying                             

various kernels and visualizing them. The plots are obtained by drawing samples from                         

different priors discussed so far including SE (Squared Exponential), Per (periodic), Lin                       

(linear) kernels,  and then multiplying these 1-D base kernels as in figure above. 
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APPROXIMATIONS 
The Gaussian process (GP) is a simple yet powerful probabilistic framework for various                         

machine learning tasks. However, exact algorithms for learning and prediction are                     

prohibitive to be applied to large datasets due to inherent computational complexity. To                         

overcome this main limitation, various techniques have been proposed, and in particular                       

we can classify approximations in scalable GPs into two main categories: 

1) Local Approximations​: It employs the divide-and-conquer (D&C) technique to focus                     

on the local subsets of training data. There are majorly following local approximation                         

techniques: 

a) Naives Local Experts (NLE) : It directly employs the pure local experts for                         

prediction. 

b) Mixture of Experts (MoE) : It “mixes” local and diverse experts owning                       

individual parameters for improving the overall accuracy and reliability.  

c) Product of Experts (PoE) : It multiplies these probability distributions, which is                       

similar to an “AND” operation on the probability densities.  

d) Generalized Product of Experts (GPoE) ​: It introduces a varying weight in PoE                         

multiples.  

e) Bayesian committee machine (BCM) : It provides an extension to PoE by                       

aggregating the experts’ predictions from another point of view by imposing a                       

conditional independence assumption and explicitly introducing a common prior. 

f) Generalized Robust Bayesian committee machine (GRBCM) ​: It introduces a                   

global communication expert M​c ​and extends the basic robust BCM.  

 

2) ​Global Approximations​: It employs techniques that approximate the kernel matrix                     

K​nn​ through global distillation. Three major techniques involved are: 

a)  ​Subset of Data 

b)  Sparse Approximations 

c)  ​Sparse Kernels 

3) Hybrid Approximation​: It employs a mixture of global and local approximation                       
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techniques to replicate K​nn ​as closely as possible. 

Throughout this section, we assume we have already obtained suitable hyperparameters 

for the covariance function, and we just concern ourselves with examining the nature of 

the approximations themselves. 

Local Approximation 

Local Approximation : It is a set of tools based on Divide & Conquer Approach to                               

approximate the kernel K​nn requiring much lesser complexity than O(n​3​) of computing                         

the original covariance matrix K​nn​. It enables non-stationary features and uses localized                       

experts to improve the scalability of GP.  

1. Naives Local Expert (NLE) 
NLE directly employs the pure local experts for prediction. The motivating idea for the                           

concept is the fact that pairs of points far away from each other are lowly correlated. We                                 

are given a set {M​i​}​i where each M​i ​is a local expert completely deciding the subregionΩ​i                                 

defined by X​i​. The goal is to predict at x​∗​ ∈ Ω​i​  as  

p(y​∗​|D, x​∗​) ≈ pi(y​∗​|D​i​, x​
∗​) 

The algorithm partitions the input space, train the experts and chooses an appropriate                         

one for predictions (not necessarily in the same order). This further gives us the                           

following classification of the NLE: 

1. Transductive NLE [2]: First selects a neighbourhood subset D* around x* and                       

then trains the corresponding expert M*. Given the test set size n​t , it employs a                               

dynamic partition to choose m​0 neighbor points around x*, resulting in O(n​t​m​0​
3​)                       

complexity. For selecting D*, we can use the simple geometric closeness criteria or                         

much more complex but accurate methods that sequentially select the                   

neighbourhood set such as GP-based active learning methods. 

2. Inductive NLE [1]: ​First trains all the experts {M​i​}, partitions the space D and then                             

decides corresponding prediction y*. For partitioning it employs a static partition                     

of D using clustering techniques, e.g., the Voronoi tessellations [1] and trees. Given                         

m​0 = n/M is the training size for each expert, for training purposes the model                             

trains independent local GP experts, resulting in O(nm​0​
2​) time complexity. 
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Drawbacks NLE 

Although NLE being naive provides a simple and faster implementation to locally                       

approximate the kernel, the naiveness introduces certain drawbacks as well which we’ll                       

be discussing below: 

➔ Poor ​Generalizability : Due a completely local approach the model lacks in                       

generalizing the functionality across the whole kernel. 

➔ Drops ​Long-term spatial correlations : The motivation towards building this                   

model appears as its drawback since it ignores the correlation between far-away                       

points which is not always true. 

➔ Discontinuous Predictions ​on ​Boundaries​. 

 

Advancements and Developments: 

Observing the aforementioned drawbacks there have been numerous advancements in                   

NLE as follows: 

➔ Patched GPs [3] : ​Using GPs with overlapping non-disjoint patches between two                       

local GPs can improve the discontinuity issues by dealing with the limits near the                           

merger of two local adjacent GPs. 

➔ Mixture or Product of GPs : ​Pathed GPs although being able to resolve                         

discontinuity and boundary issues is not scalable to higher dimensions and can                       

sometimes result in negative variances as well. Thus a better alternative is                       

provided by Mixture or Product of GPs as discussed in further sections. 

 

2. Mixture of Experts (MoE) ​[4][5] 

MoE “mixes” local and diverse experts owning individual parameters for improving the                       

overall accuracy and reliability. It employs a Gaussian Mixture Model to express the                         

mixture/combination of local and diverse experts. The mixture is represented using                     

weights with the conditional probabilities ​g​i​(x) formally termed as ​gating function​. It                       

manages the mixture with the means of a probabilistic partition of the input space and                             

thus defining the subregions where the individual experts are responsible for                     

themselves. It coheres with the term p(z=i) of the GMM which also refers to the weight of                                 
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x assigned to expert M​i​. The choice of experts depends on the implementation and                           

requirements and can be taken as a linear model or SVMs.  

p(y|x) = �​i=1 to M ​ g​i​(x) . p​i​(y|x)  

The main assumption of the model is that data points are mutually independent and                           

identical events. This assumption frees us to use negative ​log likelihood maximization                       

as given below in order to learn g​i​(x) as well as the experts using standard                             

gradient-descent based optimizers​ or ​Expectation-Maximization algorithm. 

 Maximize  �​i=1 to M ​ p(y​t​|x​t​)  [i.i.d assumption] 

This gives us the following expression for ​predictive distribution​: 

p(y*|D, x*) = �​i=1 to M ​ g​i​(x*|D) . p​i​(y*|D, x*) 

                                           --Predictive--          --Posterior--  

 

Drawbacks of MoE 

MoE despite being a significant improvement over previous model of NLE, it has some                           

setbacks discussed as follows: 

➔ Model Selection Issue : ​The decision of determining the number of experts has                         

always been a question of interest as poses a drawback to the same as there are                               

no certain measures whether to use fully generative models or others. 

➔ High model complexity : ​The model is based on a multi-modal model, thus                         

making the individual global experts responsible for all the data points. This leads                         

to a higher complexity as the parametric gating function gi is not favored in the                             

Bayesian nonparametric framework and the i.i.d. data assumption does not hold                     

here since GP fits the data dependences through joint distribution. 

Advancements and Developments: 

Observing the aforementioned drawbacks there have been numerous advancements in                   

MoE to recover from them: 

➔ Model Selection : Various proposals to select the model such as ​Akaike                       

information criterion and the synchronously balancing criterion have been                 

pitched to choose over a set of candidate M values. Furthermore, researchers have                         

been using stochastic techniques like the ​Dirichlet process [6]​, ​Polya urn                     
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distribution [7]​, ​Pitman–Yor process [8] ​to automatically infer the number of                     

experts from data. Due to the complex prior and the infinite M, the model has to                               

resort to a stick-breaking representation of Dirichlet Process. 

➔ Model Complexity​ : There have been three major threads dealing with the issue: 

◆ Mixture of implicitly localized experts (MILE) [9] : Model assigns the                     

data dynamically according to the data property and the experts’                   

performance. 

● Combining Global and Sparse approximations : This includes               

interpreting GP as the finite Bayesian linear model and using the                     

FITC experts that factorize over f given the inducing set f​m​. With m                         

inducing points for each expert, the complexity is O(nm​2​M), which                   

can be further reduced to O(nm​2​) with the Expectation                 

Maximization technique.   

◆ ​Mixture of explicitly localized experts (MELE) ​[9]​: It involves pre                     

partitioning the input space by clustering techniques and assigning points                   

to the experts before training. This thread overcomes the main drawback                     

of MILE i.e. MILE is a competitive learning process and some experts may                         

fail due to the zero-coefficient problem caused by unreasonable initial                   

parameters. 

 

3. Product of Experts (PoE)​[10] 

Product of Experts (PoE) multiplies these probability distributions, which is similar to an                         

“AND” operation on the probability densities as opposed to MoE which sums (weighted)                         

over the probability distributions or the experts via an “OR” operation as follows: 

​p(y|x) = 1/Z . �​i=1 to M p​i​(y|x) [ Z:= normalizing constant                          

]  

Since pi(y|x) in (25) is a Gaussian distribution and using the fact that the product of                               

multiple Gaussians is still a Gaussian distribution, we obtain a factorized marginal                       

likelihood ​thus making it convenient to drop the 1/Z normalizing factor as follows: 

p(y|X) = �​i=1 to M​ p​i​(y​i​|x​i​) 

where p​i​( y​i​|X​i​) ∼ N( y​i​|0, K​i + σ​2 I​n_i​) with K​i = k(X​i​, X​i​) ∈ R​n_i×n_i and n​i being the training                                           

size of expert M​i​. This factorization degenerates the full kernel matrix K​nn into a diagonal                             
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block matrix diag[K​1​,··· , K​M​ ], leading to  

K ​nn​
−1 ​≈ diag[K​1​

-1​ ,··· , K​M​
-1​ ] 

Hence, the ​complexity ​is substantially reduced to ​O(nm​0​
2​)​ given n​i​ = m​0​. 

MoE vs PoE and Drawbacks of PoE 

➔ Due to the weighted sum form of the MoE, it will never be ​sharper ​than the                                 

sharpest expert; on the contrary, due to the product form of the PoE, it can be                               

sharper than any of the experts. 

➔ PoE produces poor prediction mean and overconfident prediction variance by                   

aggregating the predictions from the independent experts, due to the inability of                       

suppressing poor experts​; on the contrary, the MoE provides the desirable                     

predictions through gating functions. 

 

Advancements and Developments: 

Observing the aforementioned drawbacks there have been numerous advancements in                   

PoE to recover from them: 

➔ Modifying the predicting process : Various aggregation criteria have been                   

proposed to weaken the votes of poor experts, in place of following the simple                           

product rule to aggregate the experts’ predictions. Generally the aggregated                   

prediction is robust to weak experts providing a more accurate prediction. The                       

following ​modified product rule [11] ​covers the necessities with weights β​i                     

quantifying the contribution of p​i​(y​∗​|D​i​, x​∗​) at x​∗​ : 

                        ​p(y​*​|D, x​*​) = �​i=1 to M​ p​i​
βi ​(y​*​|D​* ​, x​*​)  ​      [Eq General] 

 

4. Generalized Product of Experts (GPoE)​[11] 

GPoE introduces a varying weight β​i ​in equation [Eq General] of last section , which is                               

defined as the difference in the differential entropy between the expert’s prior and                         

posterior, to increase or decrease the importance of experts based on their prediction                         

uncertainty. However, with this flexible weight, the GPoE produces explosive prediction                     

variance when leaving the training data. To address this issue, we can impose a                           
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constraint  �​i=1 to M ​β​i ​= 1. 

The ​drawback ​to GPoE is that it produces explosive prediction variance when leaving                         

the training data and is thus inconsistent. 

5. Bayesian committee machine (BCM)​[12] 

BCM aggregates the experts’ predictions from another point of view by imposing a                           

conditional independence assumption and explicitly introduces a common prior p(y​∗​|θ)                   

for the experts : 

p(y|y​*​)  ≈  �​i=1 to M​ p(y​i​|y​*​) 

Thus from Bayes Rule we get the following ​modified regression: 

 p(y​*​|D, x​*​, θ) = [ �​i=1 to M​ p​i​
βi ​(y​*​|D​* ​, x​*​, ​θ) ]/ [p​i​

�i=1 to M (βi-1) ​(y​*​|θ)] 

The ​drawback ​to BCM is that it produces unreliable prediction mean when leaving X,                           

thus making it inconsistent.  

6. Generalized Robust Bayesian committee machine (GRBCM)​[13] 

There have been advancements in BCM to overcome its inconsistency thus giving us                         

generalized RBCM (GRBCM). To do so it introduces a global communication expert M​c                         

rather than the fixed GP prior performing correction, i.e., acting as a base expert, and                             

considers the covariance between global and local experts to support consistent                     

predictions when n → ∞.  

Given p​+i​
βi ​(y​*​|D​+i ​, x​*​) as ​predictive ​distribution of the expert M​+i ​trained on the   

                         

augmented data set D​+i = {D​i​, D​c​}, we get the following ​generalized modified                         

aggregation: 

p(y​*​|D, x​*​) = [ �​i=2to M​ p​+i​
βi ​(y​*​|D​+i ​, x​*​) ]/ [p​i​�i=2 to M (βi-1) ​(y​*​|D​c​, x​*​)] 

The model ​achieves ​automatic regularization and eases the inference due to fewer                       

hyperparameters and allows to temporarily ignore the noise term of GP in aggregation. 

However there are certain ​drawbacks ​to this as well. One drawback of aggregations is                           

the Kolmogorov inconsistency induced by the separation of training and predicting such                       

that it is not a unifying probabilistic framework. Another drawback comes from shared                         
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hyperparameters as those limit the capability of capturing nonstationary features, which                     

is the superiority of local approximations.  

 

Global Approximation 
These approximations to the kernel matrix K​nn​ are made possible via global distillations. 
Following are the ways in which it can be achieved: 

(a)  taking a subset of the training data with m (m<<  n) points and reducing it into a 
smaller kernel matrix K​mm 

(b) By deleting  uncorrelated entries in K​nn​ thereby creating a sparse kernel matrix 
 with many zero entries˜ nnK  

(c) m inducing points and n training points measure a low-rank representation which 
result in the Nyström approximation K​nn​ ≈ K​nm ​K ​−1​ ​mm​ K​m 

 
 
In order to achieve scalability, the sparsity of the full kernel matrix is necessary.  
 

1.  Using a subset of data 
 
This is the simplest strategy to approximate the full GP by using a subset D​sod​ of the 
training data. The standard GP inference at a lower time complexity of O(m​3​) is retained 
through SoD because it operates on K​mm​, comprising m (m<< n) data points. It produces 
reasonable prediction mean for the case with redundant data, but struggles in the case of 
overconfident prediction variance because of a limited subset. For selecting D​sod ​ , one 
could randomly choose m points from D, use any clustering technique, like, k-means and 
KD tree,  partitioning the data into m subsets and choosing their centroids as subset 
points, and employing active learning criteria, e.g., differential entropy, matching 
pursuit and information gain, to sequentially query data points with higher computing 
cost. 
 

2. Using sparse Kernels 
  
We want to get a sparse representation K ​̃nn​ of K​nn​ using the compactly supported (CS) 
kernel, imposing  k(xi, x j) = 0 when  |x​i​ − x ​j​| exceeds a certain threshold. Therefore, 
only the non-zero terms in K ​̃nn​ will remain in the calculation. Subsequently, the GP 
using the CS kernel will be scaled as O(αn​3​) with 0 <α< 1. The major challenge while 
constructing valid CS kernels would be to build a positive semidefinite (PSD) K ​̃nn​, i.e., 
vTK ​̃nnv​ ≥ 0 ∀v ∈ R​n​ .  
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3. Sparse Approximations 
 
The Sherman–Morrison–Woodbury formula can be used to calculate the inversion as 
follows: 

 
 
and​i​the​i​Sylvester​i​determinant​i​theorem to calculate the determinant ​i​as   
 

 
 
This results in the complexity of ​O(nm​2​)​. The eigenfunctions of  K​nn​  leading to the 
Nyström approximation​ as approximated as : 
 

K​nn  Q​nn​ = K​nm ​K​mm​
-1 ​K​nm​

T  ≈  

 
This enhances the large-scale kernel learning and the naive Nyström GP is 

allowed. Negative prediction variances may be produced by this scalable GP because it is 
not a complete generative probabilistic model. The Nyström approximation is only 
established on the training data and so does not warrant the PSD of the kernel matrix. 
 
A set of inducing pairs (X​m​, f​m​) are introduced. The inducing variables f​m ​related to f 
follow the same GP prior p( f​m​) = N (0, K​mm​). Also, we assume f​m​ to be a sufficient statistic 
for f , i.e., for any variables z, p(z| f , f​m​) = p(z| f​m​) holds true.  
 
The sparse approximations have 3 main categories: 
 

Prior Approximations: 
 
We modify the joint prior using the independent assumption to get 
  

p( f, f​*​ )  =  ∫ p( f | f​m ​) p( f​* ​| f​m ​) p( f​m ​) df​m 

 
where the training and test conditionals write, given a Nyström notation Q​ab​ = K​am​ K​mm​

-1 
K​mb​, and  

p( f | f​m​ ) = N( f | K​nm​K​mm​
-1 ​f​m​, K​nn ​- Q​nn ​) 

p( f​*​ | f​m​ ) = N( f​*​ | k​*m​K​mm​
-1 ​f​m​,​ ​k​** ​- Q​** ​) 
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where f​m​ is called inducing variables as the dependencies between f and f​∗​ are 
induced by f​m​. To obtain computational gains, we can modify the training and testing 
conditionals as follows 

q( f | f​m​ ) = N( f | K​nm​K​mm​
-1 ​f​m​,  Q​~​nn ​) 

q( f​*​ | f​m​ ) = N( f​*​ | k​*m​K​mm​
-1 ​f​m​,​ ​ Q​~​** ​) 

 
Then, log p( y) is approximated by log q( y) as  
 
 

 
 
It is found that with the help of specific selections of Q ​̃nn​, we can calculate |Q˜ ​nn​ + Q​nn​ + 
σ​2​  I​n​| and ( Q˜ ​nn​ + Q​nn​ + σ​2​  I​n​)​

−1​ with a complexity of O(nm​2​).  
Deterministic training and test conditionals, i.e., Q ​̃nn​ = 0 and Q ​̃∗∗​ = 0, are imposed by the 
subset of regressors (SoR), also known as deterministic-inducing conditional (DIC) as,  
 

q​SoR​( f | f​m​ ) = N( f | K​nm​K​mm​
-1 ​f​m​,  0) 

q​SoR​( f​*​ | f​m​ ) = N( f​*​ | k​*m​K​mm​
-1 ​f​m​,​ ​ 0) 

 
This is similar to applying the Nyström approximation to both training and testing data, 
which results in a degenerate GP with a rank of at most m kernel 
 

k​SoR​( x​i​, x​j​ ) = k(x​i​, X​m​) K​mm​
-1​ k(X​m​, x​j​) 

   
The SoR can also be interpreted from a weight-space point. It is common knowledge that 
the GP using a kernel with an infinite expansion of the input x in the feature space 

defined by dense basis functions is equivalent to a Bayesian linear modelρc(x)}v c  { = 1  

with infinite weights. Therefore, only m basis functions 𝟇​m​(x) = [𝟇​1​(x) , 𝟇​2​(x) … 𝟇​m​(x)]​T 
are used by the  relevance vector machine (RVM)​ ​for approximation 
 

p(f | w) = N( f | 𝚽​nm ​w, K​nn​ - 𝚽​nm​ 𝝨​mm​ 𝚽​nm​
T​

 ​) 
   
Hence, the RVM is a GP. 
 
Augmenting the basis functions at x to invert the behaviour of uncertainty​∗​ heals the 
RVM. However, this happens at a higher computing cost . On the other hand, the sparse 
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spectrum GP (SSGP)  and its variational variants address the issue by reconstructing the 
Bayesian linear model from the spectral representation (Fourier features)   
 

 
 
where s​r​ ∈ R​d​ represents the spectral frequencies. Forcing greater informative 
assumptions to Q ​̃nn​ and Q ​̃∗∗ ​is another way. Consider for example, the deterministic 
training conditional (DTC) which uses this training conditional 

 
 
The exact testing conditional is retained. The mean of  prediction is equal to that of SoR, 
but the variance of prediction is always larger than that of SoR and it grows to the prior 
when inducing points are left out. Notably, the inconsistent conditionals make the DTC 
an inexact GP. Besides, the DTC and SoR often perform poorly due to restrictive prior 
assumption Q ​̃nn​ = 0. The fully independent training conditional (FITC) [67] nullifies the 
dependence among { fi} n i=1 in such a way that given V​nn​ = K​nn​ − Q​nn​, the training 
conditional qFITC( f | f​m​) equals 
 

 
With the testing conditional retaining its exactness. The variances of (12) are identical to 
that of p( f | f​m​) due to the correlation Q˜ ​nn​ = diag[V​nn​]. Hence, in comparison to SoR and 
DTC that throw away the uncertainty, FITC retains it to some extent, which causes a 
closer approximation of the prior p( f , f∗). Moreover, the full independence assumption 
extends to q( f​∗​| f​m​). This derives the fully independent conditional (FIC) model, and 
makes it a nondegenerate GP with kernel: 

 
where δij is the Kronecker delta. kFIC has a constant prior variance. However, it is not 
stationary. Alternatively, the approximation (12) can be derived from minimizing the 
Kullback–Leibler (KL) divergence 

 , 
 This quantifies the similarity between the exact and approximated joint prior. The 
partially independent training conditional (PITC) [16] has the training conditional qPITC( 
f | f​m​) to improve FIT(C) 
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This is the same as partitioning training data D into M independent subsets (blocks) {D​i​}​

M 

i=1​ and considering the joint distribution of f​i​ in each subset. But, although it is a closer 
approximation to p( f | f​m​), the blocking qPITC( f | f​m​) brings only slight improvements 
over FITC [41]. This issue is addressed by the extended partially independent conditional 
(PIC) discussed in Section V-B. 
 
 
 

Posterior Approximations: 
 
These retain the exact prior but perform only an approximate inference. A highly 
familiar method, the elegant variational free energy (VFE) was proposed by Titsias by 
employing variational inference (VI) . VFE directly approximates the posterior p( f , f​m​| 
y), the learning of which is a central task in statistical models, by introducing a 
variational distribution q( f , f​m​| y). We now have their KL divergence KL(q( f , f​m​| y)||p( 
f , f​m​| y)) 

 

  representing the expectation over the distribution q(.).  Minimizing the 
rigorously defined KL(q||p) ≥ 0 is equivalent to maximizing F​q​ , since log p( y) is constant 
for q( f , f​m​| y). F​q​ is therefore called evidence lower bound (ELBO) or VFE. Hence, this 
makes it possible to jointly optimize the variational parameters and hyperparameters. To 
derive a tighter bound, variational calculus finds the optimal variational distribution ​i 
q​∗​( f​m​| y) to remove the dependence of F​q​ on q( f​m​| y) by taking the relevant derivative to 
be zero. This results in a collapsed bound as shown: 

 
It is worth noting that F​VFE​ differs with log q​DTC​ only by a trace term, which, however, 
substantially improves the inference quality. We should decrease the trace tr[V​nn​] ≥ 0 , 
which represents the total variance of predicting the latent variables f given fm, for 
maximizing F​VFE​, . Specifically , tr[Vnn] = 0 implies f​m​ = f and the full GP is recovered.  
The trace term is a regularizer that: 

1)  guards against overfitting,  
2) seeks to deliver a good inducing set, and 
3)  always improves F​q ​with increasing m (see the theoretical analysis.  
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The improvements of VFE were extended to continuous and discrete inputs. There was 
also an improvement in the estimation of inducing points. A mixture prior is assigned on 
X in the latent feature space, with some regularization bound for choosing good inducing 
points.  
The FITC and VFE are interpreted jointly as  
 

  
 
where log q( y) takes the form with . By changing α ∈ (0, 1],˜ nn αdiag[V nn]  Q =   

recovering FITC when α = 1 and VFE when α → 0. Beside, better predictions can be 
made by using hybrid approximation with a moderate α, e.g., α = 0.5. To further 
improve the scalability of VFE, Hensman et al.  retained the variational distribution q( 
f​m​| y) = N ( f​m​|m, S)  in F​q ​to obtain a relaxed bound  

                 
 
The first term in the right-hand side of F​q​ is the sum of n terms due to the i.i.d. 

observation noises,    
Hence, the stochastic gradient descent (SGD) , which encourages large-scale learning, 
could be employed to obtain an unbiased estimation of Fq using a minibatch {X​b​, y​b​} as 

 
 
Although the SVGP is highly scalable with desirable approximations, it has some 
drawbacks which have been mentioned below 
 

1)​ the bound F​q​ is less tight than F​VFE​ because q( f​m​| y) is not optimally eliminated. 
2)​ it optimizes over q( f​m​| y) with a huge number of variational parameters. This 
requires a lot of time to complete even one epoch of training. 
3)​ the introduction of SVI brings the empirical requirement of carefully turning 
the parameters of SGD. 

 
Inspired by the idea of Hensman, Peng derived the similar factorized variational bound 
for GPs by taking the weight-space augmentation. By deploying the variational model in 
a distributed machine learning platform PARAMETER SERVER , the authors first scaled 
GP up to billions of data points.  
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Similarly, Cheng and Boots also derived a stochastic variational framework from the 
weight space view with the difference being that the mean and variance of p( f |w), 
respectively, using decoupled basis function sets φ​a​ and φ​b​, led to a more flexible 
inference.  
Conducting a reverse VI in which “reverse” meant finding a prior p( f​m​) = N ( f​m​|ν, ) such 
that the variational distribution q​∗​( f​m​| y) = p( f​m​| y) for FI(T)C and PI(T)C is the 
maximum of ELBO was the key. Introducing Kronecker structures for inducing points 
and the variance of q( f​m​| y) further reduces the scalability of SVGP. 
 
Titsias and Hensman’s models have been further ​improved ​by using: 
 
 ​1)​ the Bayesian treatment of hyperparameters in place of traditional point estimation 
which risks overfitting when the number of hyperparameters is small. 
 2) ​the non-Gaussian likelihoods 
 
 

Structured Sparse Approximations: 
 

 A direct speedup to solve (K​nn​)​
−1​y in standard GP is achievable through fast matrix-vector 

multiplication, in which the linear system is solved iteratively using conjugate gradients 
(CGs) with  iterations, leading to a time complexity of .(s < )  s < n (sn )  O 2  

The kernel matrix decomposes to a Kronecker product which eases the K1....Kd,  K nn =   

eigendecomposition with a greatly reduced time complexity of  where for(dn )O d+1 ,  n = √d n  

d>1. 
 
Grid constraint on the inducing points is introduced by the structured kernel 
interpolations. This is done to handle arbitrary data, retaining the efficient Kronecker 
structure at the same time. 
For example by a local linear interpolation using the adjacent grid inducing points as 

(xi, u j) ≈ wi k(ua, u j) (1 − wi)k(ub, u j)  k   +    

where u​a​ and u​b​ are two inducing points most closely bound x​i​, and w​i​ is the 
interpolation weight. Inserting the approximation back into Q​nn​, we have 

  Wnm K W  Q nn ≈  −1
mm

T
mm  

where the weight matrix W is extremely sparse since it only has two nonzero entries per 
row for local linear interpolation, leading to an impressive time complexity of 

 with  for solving (K​nn​)​
−1​y. Also, the sparse W incurs the prediction(n dm )O +  d+1   m = √d m  

mean with constant-time complexity O(1) and the prediction variance with complexity 
O(m) after precomputing. 
 
There are two main drawbacks of the original SKI. Firstly, the number m of grid inducing 
points grows exponentially with dimensionality d. Thus, it is quite impractical for d > 5. 
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Secondly, the SKI might produce discontinuous predictions because of local weight 
interpolation and provide overconfident prediction variance when leaving the training 
data due to the restrictive SoR framework.  
Due to the grid constraint, the structured sparse approximations use fixed inducing 
points, resort to dimensionality reduction for tackling high-dimensional tasks, and place 
the vast majority 
of inducing points on the domain boundary with increasing d, which in turn may 
degenerate the model capability. 
 
Choosing Inducing Points: ​for the inducing size, according to theoretical analysis the KL 
divergence between the variational approximation and the posterior can be arbitrarily 
small when m grows more slowly than n for regression with normally distributed inputs 
and the SE kernel.For the location of inducing points, clustering techniques could be 
used to select a finite set of space-filling inducing points. In a recent work, the first 
attempt to simultaneously determine the number and locations of inducing points in the 
Bayesian framework by placing a prior on Xm was shown. 
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AUTOMATIC LEARNING THE KERNEL ITSELF​[19] 

 The choice of kernel which determines the right structure that can be learned by a 
GP model is still a black art. We solve this by defining an open-ended space of kernels 
and a procedure to search over this space and find a match according to the data 
structure. 

1. Ingredients Of An Automatic Statistician 

 C​urrently Humans construct new models and check models. This subdivision tries                     
to build an AI that does statistics which paves the road to the above goal. 

1.     An open-ended language of models: 

Humans couldn’t have reached this far in history without their sense of novelty. An                           
automatic search through an open-ended class can achieve some of this flexibility,                       
possible combining existing structures in novel ways. 

2.​     ​A search through model space: 

Humans researchers iteratively build and refine models using an iterative search                     
procedure which starts from simple models. Thus, any search strategy capable of                       
building arbitrarily complex models is likely to resemble an iterative model-building                     
procedure. 

3.​     ​A model comparison procedure: 

An automatic statistician needs to somehow check the models it has constructed. This is                           
done by penalising complexity using Bayesian information criterion as heuristics and                     
approx. marginal likelihood to compare models. 

4.​     ​A model description procedure: 

The wholesome purpose is achieved when it flawlessly coordinates with the human                       
brain thus a clear picture is presented. It helps a user to understand errors, structures,                             
procedures, constraints and novel statistics that have been implemented. 

Thus the ABCD (Automatic Bayesian Covariance Discovery) system is implemented. 

2. A Language Of Regression Models 
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  One can construct a wide variety of kernel structure just by adding and                         
multiplying a small number of base kernels. Thus, a language of models is constructed                           
using a language of kernels, such that they capture different properties of functions and                           
set of rules which combine kernels to yield valid kernels. Hence, we use such base                             
kernels as white noise (WN), constant (C), linear (Lin), squared-exponential (SE),                     
rational-quadratic (RQ), sigmoidal (σ) and periodic (Per). We use a form of Per due to                             
James Lloyd (personal communication) which has its constant component removed, and                     
cos (x−x ′) as a special case. 

3. A Model Search Procedure 

 Simple Greedy Search is used to span the space. We choose the highest scoring                           
kernel and modify it by combining or replacing that part with another base kernel. The                             
operations performed are: 

R​eplacement: k → k ′ 

Addition:  k → (k + k ′) 

Multiplication:   k → (k × k ′) 

  In practice, extra operators are used which propose commonly-occurring                 
structures, such as changepoint​s. 

Parallels with strategies used by human researchers: 

· Look for the structure in the residuals of a model, such as periodicity,                           
and then extend the model thus, adding a new kernel to the existing                         
structure. 

· Starts with the structure which is assumed to hold globally, such as                         
linearity, but finds that it only holds locally. This corresponds to                     
multiplying a kernel structure by a local kernel such as SE. 

· Incorporates input dimensions incrementally, analogous to algorithms               
like boosting, back-fitting, or forward selection. This corresponds to                 
adding or multiplying with kernels on dimensions not yet included in                     
the model. 

Hyperparameter initialization: 

  Optimizing the marginal likelihood over parameters is not a convex optimization                     
problem, and the space can have many local optima. We take advantage of our search                             
procedure to provide reasonable initializations. All parameters which were part of the                       
previous kernel are initialized to their previous values. All newly introduced parameters                       
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are initialized randomly. Then all the parameters are optimized using conjugate                     
gradients. This method is not guaranteed to find global optimum, but it implements the                           
commonly used heuristic of iteratively modelling residuals. 

 
4. A Model Comparison Procedure 

 
Choosing a kernel requires a method for comparing models. We choose marginal                       
likelihood as our criterion, since it balances the fit and complexity of a model                           
(Rasmussen and Ghahramani, 2001).We could avoid overfitting by integrating the                   
marginal likelihood over all free parameters, but this integral is difficult to do in general.                             
Instead, we loosely approximate this integral using the Bayesian information criterion                     
(BIC)  

           
where p(D|M) is the marginal likelihood of the data evaluated at the optimized kernel                           
parameters, |M| is the number of kernel parameters, and N is the number of data                             
points. 
BIC simply penalizes the marginal likelihood in proportion to how many parameters the                         
model has.The assumptions made by BIC are clearly inappropriate for the model class                         
being considered.Other more sophisticated approximations are possible, such as                 
Laplace’s approximation and BIC is chosen because of its simplicity. 
 

5. A Model Description Procedure 
A GP whose kernel is a sum of kernels can be viewed as a sum of functions drawn from                                     
different GPs. 

 
This decomposition into additive components provides a method of visualizing GP                       

models which disentangles the different types of structure in the model 

 
6. Structure discovery in time series  

 
A) Mauna Loa atmospheric CO2: 

First, our method analyzed records of carbon dioxide levels recorded at the Mauna Loa                           
observatory (Tans and Keeling, accessed January 2012).On comparing our kernel with                     
human experts' kernel it shows that the posterior mean and variance on this dataset as                             
the search depth increases. The final model exhibits plausible extrapolation and                     
interpretable components: a long-term trend, annual periodicity, and medium-term                 
deviations. 
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B) Airline passenger counts: 
On applying our method monthly to airline passenger counts we observe the similar                         
trends of Mauna Loa data set and in addition to that we observe near linearity of long                                 
term trend  and linearly growing amplitude of annual oscillations. 
 

7. Related Work 
 
Nonparametric regression in high dimensions  
 

​Nonparametric regression such as splines, locally weighted and GP regression cant                       
generalize well in more than a few dimensions.Applying these methods in high                       
dimensional spaces can require imposing additive structure.Generalized additive models                 
assume the regression function is a transformed sum of functions defined on the                         
individual dimensions. It is possible to extend additive models by adding more flexible                         
interaction terms between dimensions. A related procedure is smoothing splines. This                     
model is a weighted sum of splines along each input dimension, all pairs of dimensions,                             
and possibly higher dimensional combinations. Because the number of terms to consider                       
grows exponentially with the number of dimensions.  
 

8. Kernel Learning 
 

​There is a large body of work attempting to construct rich kernels through a                              
weighted sum of base kernels, called multiple kernel learning (MKL) .These approaches                       
usually have a convex objective function. However the component kernels, as well as                         
their parameters, must be specified in advance. 

Salakhutdinov and Hinton (2008) use a deep neural network with unsupervised pre                         
training to learn an embedding g(x) onto which a GP with an SE kernel is placed: Cov                                 
[f(x), f(x ′ )] = k(g(x), g(x ′ )). This is a flexible approach to kernel learning, but relies                                     
mainly on finding structure in the input density p(x). Instead, we focus on domains                           
where most of the interesting structure is in f(x). 
 

9. Changepoints 
​There is a wide body of work on changepoint modeling. Adams and MacKay                            

(2007) developed a Bayesian online changepoint detection method which segments                   
time-series into independent parts. This approach was extended by Saatçi et al. (2010) to                           
Gaussian process models. Garnett et al. (2010) developed a family of kernels which                         
modeled changepoints occurring abruptly at a single point. The changepoint kernel (CP)                       
presented in this work is a straightforward extension to smooth changepoints. 

 
10. Equation learning 
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Todorovski and Džeroski (1997), Washio et al. (1999) and Schmidt and                         
Lipson (2009) learned parametric forms of functions, specifying time series or relations                       
between quantities. In contrast, ABCD learns a parametric form for the covariance                       
function, allowing it to model functions which do not have a simple parametric form but                             
still have high level structure.  
 

   

26   



EXPERIMENTS 
 

1. Experiments on Automatic Model Construction​[19]​: 
1.1 Interpretability versus accuracy 

 
​BIC trades off model fit and complexity by penalizing the number of parameters in a                                 

kernel expression. This can result in ABCD favoring kernel expressions with nested                       
products of sums, producing descriptions involving many additive components after                   
expanding out all terms.While these models typically have good predictive performance,                     
their large number of components can make them less interpretable. 
 

The experiment was done without allowing parentheses during the search,                     
discouraging nested expressions. This was done by distributing all products immediately                     
after each search operator was applied. We call this procedure ABCD-interpretability, in                       
contrast to the unrestricted version of the search, ABCD-accuracy.  
 

1.2 Structure recovery on synthetic data 
 

​We tested our method’s ability to recover known structure on a set of synthetic                              
datasets. ​For several composite kernel expressions, we constructed synthetic data by first                       
sampling 300 locations uniformly at random, then sampling function values at those                       
locations from a GP prior. We then added i.i.d. Gaussian noise to the functions at various                               
signal-to-noise ratios (SNR). Table below : Kernels chosen by ABCD on synthetic data                         
generated using known kernel structures. D denotes the dimension of the function being                         
modeled. SNR indicates the signal-to-noise ratio. Dashes (–) indicate no structure was                       
found. Each kernel implicitly has a WN kernel added to it. 
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​The table above shows the results. For the highest signal-to-noise ratio, ABCD usually                          
recovers the correct structure. The reported additional linear structure in the last row                         
can be explained that the fact that functions sampled from SE kernels with long scales                             
occasionally have near-linear trends. As the noise increases, our method generally backs                       
off to simpler structures rather than reporting spurious structure. 
 

2. Experiments on Local Approximations​[17]​: 

 
Above are some experimental results carried out in [17]. The experiment considered                       
6-independent experts. The experimenters for the sake of a rattlefree implementation                     
used the individual experts and the differential entropy as β​i in the softmax gating                           
function.   
PoE : ​It was observed that PoE generates the worst predictions among all models being                             
compared. It poorly estimated the mean along with an overconfident prediction of the                         
kernel matrix and individual standard deviations. The theoretical reason is that it                       
aggregates the predictions from six independent experts and is unable to hide weaker                         
experts as already explained in previous sections on PoE.  
MoE :​Secondly it is observed that MoE provided better predictions that can be directly                           
mapped to the fact that it introduces betterment in terms of gating functions.  
NLE : ​For NLE a general trend of improper generalizability and discontinuity was                         
observed.  
GPoE : ​The best predictions were observed with GPoE eliminating considerably the                       
“boundary discontinuities” of NLE model. 
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3. Experiments on Global - Local and Combined Approximations​[18]
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One way of thinking of an improvement is to develop a middle way round the two                               
approximations i.e. a combination of global and local approximations. This kind of                       
approximation (partially independent conditional (PIC) approximation) might be able to                   
deal with all the regimes handled individually by these two approximations. Although                       
studying this completely seemed a bit extravagant for this term paper and thus we will                             
be skipping through the literature and theoretical aspects of the model and directly                         
present another experiment from [18] giving us a graphical analysis of global, local and                           
combined sparse GP approximations. The graphs consider mean predictions and two                     
standard deviation error lines as follows: [Please note local blocks in some figures are                           
omitted due to minimal-unobservable size] 
FI(T)C : ​represented using black dashed lines  
Local Approximations : ​represented using red solid lines for local GPs 
PIC : ​represented using blue solid lines 
Black x pointers are used to represent the inducing inputs. 
Note that FI(T)C predictions are plotted, using just 10 inputs. 
Local training blocks are represented using different alternating color scheme i figures ©                         
and (d). 
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The local GP in fig a has a lot of discontinuity but apart from that it would actually work                                     
pretty well for such a longer length scale. But in fig d input data i.e the training inputs                                   
have been sampled in a non-uniform manner and local GP is unable to handle it. In this                                 
case FI(T)C predictions are much better as theoretically they are able to account for the                             
correlations between different clusters and remove discontinuities in a better way. But                       
again PIC outperforms both in this case. 
It is observed that in fig e, local GP lacks in producing desired outputs as it couldn’t                                 
handle boundary cases and predictions near boundaries of two groups. However, on the                         
same data, using PIC gave pretty accurate predictions. Also, the best portions of fig e                             
(local GP) and fig g (FI(T)C) can be observed in figure f (PIC) as well. Thus laying out the                                     
observation that combined approach PIC surpasses both the local GP approach and                       
FI(T).  
 

4. Experiments on Hierarchical-Partitioned Approximations​[20] 

 

 

 
The experiments carried out in [20] graphically differentiate between the performances                     
of kernel approximations of FI (T)C, local GP, a tree-GP and a Hierarchical Partitioned                           
Gaussian Process Approximation (HPGPA) designed by the authors themselves.. It is                     
essentially done by employing 729 × 729 (531k) sized data (originally down-sampled from                         
3645 × 3645 data) and plotting the predictions corresponding to the goal of predicting the                             
altitude of corresponding location . The data to be masked from the train set was                             
probability proportional to the variance of altitudes with the aim to offer a challenging                           
interpolation. The tree in HPGPA has every non-leaf node with either 9 or 81 furthus                             
branches, and parallely author selected length-scales such that increase/decrease at each                     
level proportional to the area of the region covered by the block. 
 
As observed from above figure : 
FITC​ because of a lack of inducing points predicts poorly giving a blurry output.   
Local GP ​is unable to interpolate as the kernel is single scale (leads to formation of                               
sink-holes). Same is the case for Tree-GP. 
HPGPA predicts the output (which is of the form of an image) very closely to the original                                 
image as it is able to correctly predict on the basis of complex trends with the                               
hierarchical multi-scale modeling. 
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: FITC does not scale well, local/tree GP makes inaccurate predictions although quite fast                           
while HPGPA clearly makes better predictions than other methods. 
 

5. Experiments on Comparing All Approximations: 
So far, we have discussed and theoretically analyzed the various approximation schemes                       
including various types of local, global, combined and hierarchical approximations. But                     
we tried to realize the practical limit of these approximation schemes as all the                           
theoretical analysis only gives us an asymptotic bound on the running time, whereas for                           
practical purposes it may differ.  

Our main focus was implementing a code similar to that described in paper on “A                             
Framework for Evaluating Approximation Methods for Gaussian Process Regression” by                   
Krzysztof Chalupka et al [22]. The framework given in [22] is suitable for SoD (subset of                               
Data) and FI(T)C . We tried to extent at apply the same framework to GPoE and RBCM                                 
models following a similar concept where we the decompose the running time into two                           
parts for analysis: 

1. Time for training the models as well as the time taken for hyperparameter                         
optimization. 

2. Time required for the test cases i.e. the testing time. 
 
This time-division allows us to do a task-specific analysis and comparison of various                         
models. We used a smaller subset of the dataset SARCOS from                     
http://www.gaussianprocess.org/ , the implementation had a few errors while extending                   
to Local Approximations and we were unable to observe the predictions corresponding                       
to the same. 
 

6. Our Experiments:  FI(T)C vs SE Kernel GP for COVID Predictions 
 ​We implemented the following two and compared their predictions: 

1. Simple Squared Exponential Kernel with following specifications: 
a. Sigma_f (SE Kernel Variance) = 0.6 
b. l  = 95 
c. Gaussian noise = .1 

2. FI(T)C with following specifications: 
a. A Constant mean function with the peak as the constant value [ We also                           

experimented with a linear mean kernel but the predictions were more                     
accurate in constant case.] 

b. We used an Exponential Quadratic Covariance Function with lengthscale =                   
0.1 and input_dimension as 1 (default for a scalar or PyMC3 random                       
variable) 

c. We defined a set of median values of train data as Xu i.e. the set of                               
inducing points 
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The main code snippet for FI(T)C approx is as shown below.  
Note : For FI(T)C python implementation we used python’s ​PyMC3 ​library.  

 
 
 
We then obtain the prediction of test set Xs and plot it using matplotlib pyplot functions: 
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We also visualize the resulting covariance matrix corresponding to the predictions with                       
the help of the following code: 

 
 

Observations India: 

 

 ​SE-Kernel GP FI(T)C 
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Observations World: 
 ​SE-Kernel GP FI(T)C 

 

 
 
 

Conclusions of Our Experiment​... 
The predictions of FI(T)C were observed to be poorer than the simple Squared                         
Exponential Function GP. We observed this might have happened probably because of                       
the following reasons: 

1. The approximation hyperparameters were not optimized and user-fed, whereas                 
we did a hyperparameter optimization for Simple SE-Kernel GP. 

2. The choice of covariance function might have created poor predictions, as we                       
chose exponential quadratic covariance function.  

3. The output variance of predicted data appears very symmetric along the diagonal                       
for FITC whereas for simple GP it is much concentrated along the lower right                           
corner. We believe that choosing a more complex covariance function such as                       
periodic, linear, cosine, polynomial, gibbs covariance functions. 

4. A poor choice of induced points might have caused the predictions to go wrong in                             
FITC. DataSet Source : ​https://ourworldindata.org/coronavirus-source-data 
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DISCUSSIONS AND FUTURE WORK 
 

1. One way of thinking of an improvement is to develop a middle way round the two                               
approximations i.e. a combination of global and local approximations. This kind                     
of approximation might be able to deal with all the regimes handled individually                         
by these two approximations. Although studying this completely seemed a bit                     
extravagant for this term paper and thus we skipped through the literature and                         
theoretical aspects of the model and directly presented another experiment from                     
[18] giving us a graphical analysis of global, local and combined sparse GP                         
approximations.  

2. Another notable point while studying sparse approximations as well as local                     
approximations was an inherent need of better, goal specific clustering                   
techniques for the heuristics. For instance for a combined model a random                       
clustering which picks; with no replacements; the cluster centers randomly from                     
the training input points. The running time of this can go upto O(NS) training time                             
and O(S) test time per test case. Thus there seems to be a need for betterment of                                 
these techniques to improve these algorithms from base. 

3. Although PIC is a better approximation inculcating good features of both Local                       
And Global Approximation, one way of thinking can be merge it with a more                           
latest hierarchical version and thus allowing it to run on much larger datasets as                           
compared to the conventional PICs in much faster time. 
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