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1 INTRODUCTION
The twenty-first century has witnessedmany revolutionary technologies such as GPS navigation, area surveillance,
automated vehicles, robotic mobility, assisted living, and smart-home devices to name a few. The common question
that comes up while designing the these technologies is "what if in one way computers could learn to localize
themselves in a closed environment like a room or a dining table or probably a concealed room in a bank, so as to
secure/guard the whole field?". All of this can be summarized by the Art Gallery Problem. The problem dates long
back to 1973, when Victor Klee posted the problem statement titled "The Art Gallery Problem" to Vaclav Chvàtal.
The question Klee asked was "Consider an art gallery, what is the minimum number of stationary guards needed
to protect the room?" In geometric terms, the problem was stated as: "Given an 𝑛-vertex simple polygon, what is
the minimum number of guards to see every point of the interior of the polygon?" Chvàtal, who received the
problem, was able to prove a bound of ⌊𝑛3 ⌋ for the sufficient (as well as necessary) number of guards to guard the
gallery. Consequently the Art Gallery Problem has become arguably one of the most well-known problems in
discrete and computational geometry. Numerous research works have been published on the subject. O’Rourke’s
early book from 1987 [O’r87] has more than 2,000 citations, and each year, top conferences publish new results on
the topic. The problem was proven NP-Hard in 1994-95 but couldn’t be proven NP-complete. Until very recently
in 2017, Abrahamsen et al. proved the problem to be ∃𝑅-complete. These results were preceded by Abrahamsen’s
proof which established that sometimes irrational guards are necessary for guarding the art gallery. This result
posed the potential hardness of the problem.
Years of work on the problem and the requirement of specific constraints in robotics and other practical

applications, the problem developed multitude of variants based on the type of guards allowed, region to be
guarded or the type of polygon. The problem has also been studied in depth using numerous tools of theoretical
computer science and computational geometry ranging from exploring bounds on the sufficient number of guards
to approximation and parameterized algorithms. This paper is an attempt to survey and accumulate all major
results developed into these particular variants of Art Gallery Problem.

1.1 Paper Structure
The contributions of paper are essentially a highlight of the current results on the problem as a literature survey.
We initialize with introducing the required terminology in Section 2.1. In Section 2.2, we formally define the
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Art Gallery Problem and the variants we will be considering for our literature survey. Results in the paper
are sectioned into essentially 4 parts. In Section 3 we establish NP-Hardness of the problem under various
constraints. We present that the problem has not yet been proven to be 𝑁𝑃 −𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , and present the result
of ∃𝑅 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 of the problem. To emphasise on the potential hardness of tractability of the problem,
we present a proof that irrational guards are sometimes necessary in polygons to optimally guard the given
region (Section 3.1). In Section 4 we exploit bounds on numerous variants of the problem including Classical Art
Gallery Problem, Orthogonal Art Gallery Problem (resp. Section 4.1 and Section 4.2). The section shows results
on variants including edge guard, vertex guard, holes in polygons.
In Section 5, we exploit the NP-Hardness of the problem and highlight 2 major approximation results with

𝑂 (𝑙𝑜𝑔𝑛), 𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 )-approximation factor for both vertex guard and edge guard problems (resp. Section 5.2,
Section 5.3). Then we deviate from the classical problem and consider a variant of the problem by relaxing the
visibility criteria and present a 6-approximation result by Ghosh et al. on visibility polygons (Section 5.4). Next we
extend our approach to parameterized algorithms in Section 6 showing hardness results w.r.t the natural parameter
for the variants edge and vertex guard using the ETH-Hypothesis. We then present an FPT by Lokshtanov et
al. w.r.t reflex vertices (Section 6.2). We conclude the survey with a set of open problems and potential future
directions in AGP in Section 8.

List of Figures

1 Polynomial with 3 irrational guards in optimal solution but requires 4 rational guards (not to scale). 8
2 Polynomial with 6 irrational guards in optimal solution but requires 8 rational guards. 8
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edge guards 12
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3𝑛
10 ⌋ edge guards respectively. 13

8 Tight case for Theorem 14 where ⌊𝑛4 ⌋ guards always required. Here, 𝑛 = 16, 𝑔 = 4 (shown with red
nodes). 14
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18 Multiple invisible cells exist within the polygon that are not visible from the guards placed at 𝑝𝑢 (𝑧) and
𝑝𝑣 (𝑧). 25

19 Reduction from Hitting Set on interval graphs to a restricted version of the AGP. 27
20 Point Linker Gadget (using 3 weak linkers) 28
21 Polygon with guard placemet guarding the boundary but not the entire area as the shaded triangle

formed in the middle is not visible to these guards. 30
22 Polygons admitting no witness set of points 31
23 Partition of a polygon boundary and inducing line segments and their extensions. 𝑝1 sees past right 𝑣1

and 𝑝2 sees past left of 𝑣1. 𝑣1 𝑖𝑠 𝑜 𝑓 𝑇𝑦𝑝𝑒 1, 𝑝3 𝑖𝑠 𝑜 𝑓 𝑇𝑦𝑝𝑒 2 and 𝑝1 𝑖𝑠 𝑜 𝑓 𝑇𝑦𝑝𝑒 3 anchor points. The line
segment ®𝑣1𝑣3 is a cross line. 31

2 PRELIMINARIES
In this section, we will define the terms appearing frequently in the paper.

2.1 General Definitions
Here we define the terms which will be useful in the later section -
Definition 1 (Simple Polygon). A polygon that does not intersect itself and has no holes.

Definition 2 (Visibility). Two points u and v in a polygon P are said to be visible if the line segment joining u
and v lies entirely inside P.

Definition 3 (Fan polygon). A simple polygon is called a fan if there exists a vertex that is visible from all
points in the interior of the polygon.

Definition 4 (Convex Polygon). A convex polygon 𝑃 is a simple polygon such that for every two points 𝑝 and
𝑞 on the boundary (or interior) of 𝑃 , no point of the line segment 𝑝𝑞 is strictly outside 𝑃 .

Definition 5 (Monotone Polygon). A polygon P in the plane is called monotone with respect to a straight line
L, if every line orthogonal to L intersects P at most twice.

Definition 6 (Reflex Vertices). A vertex V of a polygon is a reflex vertex if its internal angle is strictly greater
than 𝜋 .

Definition 7 (Polygon with holes). If the boundary of P consists of two or more cycles, then P is called a
polygon with holes. Otherwise, P is called a simple polygon or a polygon without holes. Alternatively, given a polygon
P and a set of m disjoint polygons 𝑃1; ...; 𝑃𝑚 contained in the interior of P , we call the set 𝑃 − {𝑃1 ∪ . . . ∪ 𝑃𝑚} a
polygon with holes. In this case, we say that P has m holes.

Definition 8 (Planar Graph). A graph which can be drawn on a plane such that no two edges intersect is a
planar graph.

Definition 9 (Triangulated Graph). A planar graph G is said to be triangulated (also called maximal planar)
if the addition of any edge to G results in a non-planar graph.

Definition 10 (n-triangulation). A planar graph with n vertices such that one of its faces is bounded by an
n-gon and each of the remaining faces is bounded by a triangle.

Definition 11 (Fan triangulation). A k-triangulation will be called a fan triangulation if one of its vertices
meets all of its k - 3 non-boundary edges.
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2.2 Art Galleries and Variations
Art Gallery Problem has been studied considering a lot of variations. We define the problem in the most general
way as follows:

Art Gallery Problem (AGP)

Input : A simple polygon 𝑃 , (possibly infinite) sets 𝐺 and 𝐶 of points within 𝑃
Goal : Find the minimum set 𝑆 ⊆ 𝐺 such that every point in 𝐶 is visible to at least 1 guard in 𝑆 .

We can similarly define the decision version of the problem, with an additional input integer 𝑘 . The goal of
decision version is to decide whether there exists a set 𝑆 ⊆ 𝐺 , such that |𝑆 | ⩽ 𝑘 and every point in 𝐶 is visible to
at least one guard in 𝑆 .

2.2.1 Variations of guards.
Points within polygon 𝑃 (including the boundary) can be broadly classified into Vertex (vertices of 𝑃 ), Point
(all points within 𝑃 ) and the Boundary (all points on the boundary of 𝑃 ). Guard set can also be defined as
Mobile where they are allowed to move along closed line segments totally contained in a polygon 𝑃 . We
can restrict the mobile guards to move along an edge and obtain another placement for guard set 𝐺 along
Edge. This gives to rise to variations of AGP, which can be defined as 𝑋𝑌𝐺 (𝑋 , 𝑌 guard art gallery) where
𝐺 = 𝑋 ⊆ {𝑉𝑒𝑟𝑡𝑒𝑥, 𝑃𝑜𝑖𝑛𝑡, 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 𝐸𝑑𝑔𝑒} and𝐶 = 𝑌 ⊆ {𝑉𝑒𝑟𝑡𝑒𝑥, 𝑃𝑜𝑖𝑛𝑡, 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦}. We can simplify the notation
where the points to be guarded i.e. 𝐶 is the set of all Points in 𝑃 , and denote it simply by 𝑋𝐺 (𝑋 Guard Art
Gallery). We elaborate the possible guard placements as follows :

Definition 12 (Point Guards). These are guards that can be located anywhere in the polygon to be guarded.

Definition 13 (Vertex Guards). In this case, the positions of the guards are restricted to vertices of the polygon.

The distinction between point and vertex guards is important. In many of our results, the bounds obtained for
these two types of guards are different.

Definition 14 (Edge guards). Edge guards were introduced by Toussaint in 1981. His original motivation was
that of allowing a guard to move along the edges of a polygon. A point q can be considered guarded if it is visible
from some point in the path of a guard. Alternately, we could think of the illumination problem of a polygon P in
which we are allowed to place "fluorescent" lights along the edges of P ; each fluorescent light covers the whole length
of an edge of P . Within this setting, our problem becomes: How many "fluorescent" lights are needed to illuminate a
polygon with n vertices?

Definition 15 (Mobile guards). O’Rourke introduced this variation in which the guards are allowed to move
along closed line segments totally contained in a polygon P .

2.2.2 Variations of Art Gallery Structure.
Apart from variants arising from numerous placements for guards (𝐺) and points to be covered (𝐶), variants
with different properties of polygon 𝑃 have been vastly studied. One of the variations includes considering the
input being an Orthogonal Polygon. This is denoted by appending an ′ −𝑂 ′ to the problem notation (𝑋𝑌𝐺 −𝑂).
The input polygon 𝑃 may even have some forbidden closed regions where guards are not allowed to be placed.
Formally we define there forbidden closed regions as Holes. Given the polygon 𝑃 and a set of m disjoint polygons
𝑃1, ..., 𝑃𝑚 (called holes) contained in the interior of 𝑃 , we call the set 𝑃 − {𝑃1 ∪ . . . ∪ 𝑃𝑚} a polygon with holes.
We can also consider variant where holes are allowed inside polygons and denote them by 𝑋𝑌𝐺 (𝐻 ) (with ′𝐻 ′
representing holes variant).
Table 1 summarizes all variants possible with symbols used in the paper.
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Symbol Definition
AGP Art Gallery Problem
VG Vertex Guard
EG Edge Guard
PG Point Guard
BG Boundary Guard
VVG Vertex-Vertex Guard
VBG Vertex-Boundary Guard
BVG Boundary-Vertex Guard
BBG Boundary-Boundary Guard
PVG Point-Vertex Guard
PBG Point-Boundary Guard
EVG Edge-Vertex Guard
EBG Edge-Boundary Guard
VG(H) Vertex Guard in Polygon with holes
EG(H) Edge Guard in Polygon with holes
PG(H) Point Guard in Polygon with holes
BG(H) Boundary Guard in Polygon with holes
VVG(H) Vertex-Vertex Guard in Polygon with holes
VBG(H) Vertex-Boundary Guard in Polygon with holes
BVG(H) Boundary-Vertex Guard in Polygon with holes
BBG(H) Boundary-Boundary Guard in Polygon with holes
PVG(H) Pont-Vertex Guard in Polygon with holes
PBG(H) Point-Boundary Guard in Polygon with holes
EVG(H) Edge-Vertex Guard in Polygon with holes
EBG(H) Edge-Boundary Guard in Polygon with holes
VG −O Vertex Guard on Orthogonal Polygon

VG(H) − O Vertex Guard in Orthogonal Polygon with holes
Table 1. Glossary of all used notation.

3 HARDNESS OF AGP
Like a lot of other computational geometry problems, the question of tractability of AGP has been a long standing
open problem. The problem has been proven to be NP-Hard as follows:

Theorem 1. The minimum vertex guard problem (VG) for polygons is NP-Hard.

Proof Idea:Their proof is based on a reduction of the 3-satisfiability problem [FK94]. In the same paper, they show
that the minimum edge and point guard problems are also NP-hard. □

Similar NP-Hard results were established for vertex as well as point variants for orthogonal polygons in 1995
by Schuchardt et al.

Theorem 2. [SH95] The minimum vertex-guard (VG −O) and point-guard (PG −O) problems for orthogonal
polygons are NP-Hard.

It has long been known that the problem is NP-hard, but no one has been able to show that it lies in NP.
Recently, the computational geometry community became more aware of the complexity class ∃𝑅, which has
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been studied earlier by other communities. The class ∃𝑅 consists of problems that can be reduced in polynomial
time to the problem of deciding whether a system of polynomial equations with integer coefficients and any
number of real variables has a solution. Clearly 𝑁𝑃 ⊆ ∃𝑅.

Working in this direction, in 2018, Abrahamsen et al. proved that solving the AGP is as hard as deciding whether
a system of polynomial equations and inequalities over the real numbers has a solution under a polynomial time
reduction. This implicitly would imply that (1) any system of polynomial equations over the real numbers can be
encoded as an instance of the AGP, and (2) the AGP is not in the complexity class 𝑁𝑃 unless 𝑁𝑃 = ∃𝑅. The main
contribution of their work is following theorem:

Theorem 3. [AAM18, Theorem 1.1] Point Guard (PG) variant of AGP is ∃𝑅 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , even the restricted
variant where we are given a polygon with corners at integer coordinates.

With a few modifications it is possible to extend this result to Edge Guard (EG) variant as well.

3.1 Irrational Placement of Guards
In 2011, Dagstuhl [AMT11] pitched an open problem asking whether there exist polygons such that every optimal
solution requires at least one guard to be placed at irrational coordinates. Despite a tremendous amount of work
on the AGP, the open problem was not solved until 2017 by Abrahamsen et al. [AAM17] who gave a positive
existential results by constructing a family of monotone polygons given by integer coordinates that require
guard positions with irrational coordinates in any optimal solution. They proved that ratio of optimal number of
guards with only rational coordinates to optimal number of guards with irrational coordinates for this family of
polygons is 4

3 .
The building block of proof involves constructing a polygon (as shown in Figure 1) which requires 3 guards

if we are allowed to place guards at irrational coordinates. Otherwise, four guards are needed if only rational
coordinates are allowed. The proof is further extended such that for every natural number 𝑛, we have a monotone
polygon which requires 3𝑛 guards with irrational coordinates. Otherwise, 4𝑛 guards are necessary if only rational
coordinates for guards are allowed. Their results are summarized as follows:

Theorem 4. [AAM17, Theorem 1] There exists a simple monotone polygon 𝑃 (as shown in Figure 1) such that the
coordinates of vertices are integral values and 𝑃 can be optimally guarded by 3 guards with irrational coordinates
whereas with only rational coordinates allowed for placing the guards 4 guards are required optimally for guarding 𝑃 .

Theorem 5. [AAM17, Theorem 1] There exists a family of simple polygons (𝑃𝑛)𝑛∈𝑍+ (as shown in Figure 2) such
that the coordinates of vertices are integral values and each 𝑃𝑛 can be optimally guarded by 3𝑛 guards with irrational
coordinates whereas with only rational coordinates allowed for placing the guards 4𝑛 guards are required optimally
for guarding 𝑃𝑛 .

Another extension to these results proves that a similar ratio between irrational optimal solution and rational
optimal solution is observed in the class of rectilinear polygons.
As an open problem Friedrichs et al. [FHKS15] questioned : "For the Art Gallery Problem it is not known

whether the coordinates of an optimal guard cover can be represented with a polynomial number of bits". It
remained as an open problem, till 2018. In the paper by Abrahamsen et al. [AAM18] they prove that under the
assumption 𝑁𝑃 ≠ ∃𝑅 the AGP is not in 𝑁𝑃 , and such a representation does not exist.

Another result, which follows as a corollary of the construction for hardness proof in Theorem 3, proves that
for any real algebraic number 𝛼 , there is an instance of the AGP where one of the coordinates of the guards
equals 𝛼 in any guard set of minimum cardinality. This is a generalization of Theorem 5, which established that
irrational guards are sometimes needed in optimal guard sets.
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Fig. 1. Polynomial with 3 irrational guards in optimal solution but requires 4 rational guards (not to scale).

Fig. 2. Polynomial with 6 irrational guards in optimal solution but requires 8 rational guards.

Theorem 6. [AAM18, Theorem 1.2] Given any real algebraic number 𝛼 , there exists a polygon 𝑃 with corners at
rational coordinates such that in any optimal guard set of 𝑃 there is a guard with an 𝑥-coordinate equal to 𝛼 .

Theorem 6 justifies the difficulty in constructing algorithms for the AGP, explains the lack of combinatorial
algorithms for the problem and rules out many algorithmic approaches to solving the AGP.
Another major result in [AAM18] proved that every instance of the AGP can be encoded as an existential

formula using (𝑛 + 𝑘)6 variables, where 𝑘 is the number of guards and 𝑛 is the number of corners of the polygon.
This brings up a new problem of optimizing the number of variables that are sufficient as well as necessary for
encoding the problem, as fewer variables lead to faster algorithms for the AGP.
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4 BOUNDS ON NUMBER OF GUARDS
In this section we deviate from the goal of computing an optimal solution for AGP and present works done in
the direction of proving various bounds on the number of guards required (or sufficient). The section has been
split into two sections, Section 4.1 elaborates results for the classical variant on simple polygons, whereas in
Section 4.2 we present results for AGP under the assumption that input polygon is orthogonal.

4.1 Classical Art Gallery
Throughout the paper, we refer to a classical art gallery as an art gallery whose flooring is a simple polygon. In
this section, we discuss important results related to classical art gallery, with different kind of guards. The first
problem related to AGP was posed by Victor Klee in 1973, where he asked the minimum number of stationary
guards to guard an art gallery. The first result, as proved by Vaclav Chvàtal in 1975 is :

Theorem 7. ⌊𝑛3 ⌋ stationary guards are always sufficient and occasionally necessary to illuminate a polygonal
art gallery with 𝑛 vertices.

Proof Idea: He proves that every n-triangulation can be partitioned into𝑚 fans where𝑚 ⩽ ⌊𝑛3 ⌋ and the proof is
based on induction. For base case, for 𝑛 = 3, 4, 5 the result is trivial as any n-triangulation itself would be a fan
triangulation. For the inductive case, for the n-triangulation (say𝐺), mark the vertices 1, 2, ..., 𝑛 in cyclic order. Let
𝑘 denote the smallest integer such that 𝑘 ⩾ 4 and𝐺 has an edge ( 𝑗, 𝑗 +𝑘) for some 𝑗 . With this definition, we have
𝑘 ⩽ 6. Now, notice that this edge ( 𝑗, 𝑗 + 𝑘) divides𝐺 into a (𝑘 + 1)-triangulation𝐺1 and (𝑛 − 𝑘 + 1)-triangulation
𝐺2. They then consider different cases which arise for different values of 𝑘 and show that the triangulation𝐺 can
be partitioned into𝑚 fans with𝑚 ⩽ ⌊𝑛3 ⌋. This gives us the required result, as after triangulation of the art gallery,
we can partition it into𝑚 fans with𝑚 ⩽ ⌊𝑛3 ⌋. As each fan can be guarded with a single guard, this would guard
the entire art gallery. □

The proof by Chvàtal was long and tedious. Fisk provided a much simpler proof for the same using vertex
coloring.
Proof Idea: For the simple polygon, we perform a triangulation which can be done by adding 𝑂 (𝑛) interior
diagonals. (See Figure 3(a)) . Consider the graph with vertices as vertices of the polygon and edges as the edges
from this triangulation. We can perform a 3-coloring of this graph always (despite the problem of 3-coloring of a
graph being NP-complete). Once a 3-coloring is performed, we pick the vertices from the color class of smallest
size. Say this size is𝑚. We can gurantee that𝑚 ⩽ ⌊𝑛3 ⌋, as𝑚 is the minimum of size of the color classes, and 𝑛

3 is
the average of the size of the three classes, and we know that minimum of a set of numbers is less than or equal
to their average. If we place guards at the vertices colored by this minimum class-size color, then it guards the
whole art gallery. Because, for each triangle of the triangulation, we have one guard at one of its vertices (as we
have performed a 3-coloring), and this guard would cover the triangle. Hence, all triangles are guarded, which
means the whole art gallery will be guarded. □

These results show that ⌊𝑛3 ⌋ are sufficient. To show that they are sometimes necessary, consider the family of
polygons known as comb polygon. For example, consider the comb polygon 𝐶𝑚 with 𝑛 = 3𝑚 vertices shown in
Figure 3(b). It is not difficult to observe that at least𝑚 guards will be required to cover a comb polygon. Hence,
these families show that sometimes ⌊𝑛3 ⌋ are required.

4.1.1 Holes In Classical Art Gallery.
Here, we will discuss the problem variant where holes can be present in the art gallery. These holes complicate
the problem further as they obstruct the vision of the guards, mostly leading to increased number of required
guards in the optimal solution. A fundamental lemma, as shown by Rourke [O’r87] says :
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Fig. 3. Illustration of proof of Chvàtal’s Art Gallery Theorem. (a) A triagulated polygon, with 3-colored vertices (green, blue,
red). (b) Comb Polygon : Tight case for Theorem 7 with 𝑛

3 guards (One possible guard placement is shown with red nodes).

Lemma 1. Triangulation of a polygon with holes is always possible

Proof Idea: Consider that polygon 𝑃 has 𝑛 vertices and ℎ holes. The proof is based on induction, with base case of
ℎ = 0 which is known to be true. Consider a completely internal diagonal 𝑑 of this polygon. Imagine splitting the
polygon along this diagonal. Two cases arise. First case is where one end point of this diagonal lies on a hole. After
split, a single polygon remains, but ℎ decreases by 1 and 𝑛 increases by 2 (The hole sharing vertex with diagonal
disappears). In the second case, both end points lie on the outer boundary, then the split results in two polygons,
both having lesser number of vertices and holes. In both cases, the inductive hypothesis holds and result follows. □

O’Rourke [O’r87] proved the first result on guarding polygons with holes:

Theorem 8. [O’r87] Any polygon with n vertices and h holes can always be guarded with ⌊ (𝑛+2ℎ)3 ⌋ vertex guards.

Proof Idea: The proof eliminates the holes of polygon repeatedly. For the given polygon 𝑃 , suppose it has been
triangulated into a triangulation 𝑇 (which we know can be done from Lemma 1). Now, for every hole, we would
have some diagonal with one of its endpoint on it. The other end may be on another hole, or to a vertex on the
outer boundary of the polygon. If a split is performed along this diagonal, then in the former case, the two holes
will merge into a single hole, and in the latter case, the hole and outer region get merged effectively removing
the hole. In both cases, the number of holes reduce by 1. However, not all sequences of cuts result in a single
polygon at the end. A method of choosing cuts which uses dual of the triangulation was mentioned by Rourke
which guarantees a single polygon at the end. The important part for the proof however, is that after all holes
are cut, the resulting polygon 𝑃 ′ would have 𝑛 + 2ℎ vertices. This is because each cut would produce two new
vertices. As we now have a single polygon without holes, applying the classical art gallery theorem gives the
desired result of ⌊ (𝑛+2ℎ)3 ⌋ vertex guards. □

This bound is not believed to be tight. Shermer showed examples of polygons with one hole which can easily
be stitched together for larger number of vertices and holes as shown in Figure 5. Using this, he showed that :

Theorem 9. [O’r87] For polygon with n vertices and h holes, ⌊ (𝑛+ℎ)3 ⌋ vertex guards are sometimes necessary.

He further conjectured that :

Conjecture 1. Any polygon with n vertices and h holes can always be guarded with ⌊ (𝑛+ℎ)3 ⌋ vertex guards.

This conjecture was proved by Shermer for ℎ = 1[O’r87], but remains open for ℎ > 1.
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Fig. 4. Polygons with n=8, h=1 and require 3 guards (One possible guard placement is shown with red nodes).

Fig. 5. A stitched polygon with 24 vertices, 3 holes and requires 9 guards (One possible guard placement is shown with red
nodes).

We will now discuss some results for classical art gallery with holes and using point guards, where we have
an interesting result which looks similar to Shermer’s Conjecture. Bjorling-Sachs and Souvaine [BSS91] and
Hoffmann, Kaufman, and Kriegel [HKK91] independently proved:

Theorem 10. [BSS91] [HKK91] ⌊ (𝑛+ℎ)3 ⌋ point guards are always sufficient and occasionally necessary to guard
any polygon with n vertices and h holes.

Proof Idea: The approach we briefly mention here is the one used by Bjorling-Sachs and Souvaine[BSS91]. They
first connect each hole to the exterior with a quadrilateral "channel" making the polygon hole-free as holes
have been merged with the exterior. The channels are such that only one new vertex is introduced for each
channel, and a triangle 𝑇 in the remaining polygon sees all of the channel. Then they triangulate the hole-free
version of the polygon,while ensuring that this triangle 𝑇 exists in the triangulation and place guards based on
three-coloring. This gives the desired bound of ⌊ (𝑛+ℎ)3 ⌋. □

In 1995, Bjorling-Sachs and Souvaine [BSS] gave an 𝑂 (𝑛2) time algorithm to find the position of the ⌊ (𝑛+ℎ)3 ⌋
point guards. Their proof and algorithm does not apply to vertex guards, as they modify the polygon during
which several new vertices were created, which may not necessarily exist in the original polygon and therefore
would not correspond to vertex guards. For vertex guards, the problem of finding a tight bound remains open.
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4.1.2 Edge and Mobile Guards in Classical Art Gallery.
The problem of edge guards was proposed in 1981, where Toussaint asked the question of determining the
minimum number of edge guards required to guard any polygon with 𝑛 vertices. He made the following
conjecture:

Conjecture 2. Except for a few polygons (as shown in 6(b)), ⌊𝑛4 ⌋ edge guards are always sufficient to guard any
polygon with 𝑛 vertices.

In Figure 6 in the left we have an example polygon that requires ⌊𝑛4 ⌋ edge guards, and in the right, we have
the only two known counterexamples to this conjecture which were given by Paige and Shermer.

Fig. 6. (a) A polygon that requires ⌊𝑛4 ⌋ edge guards (b) Paige and Shermer’s polygons requiring more than ⌊𝑛4 ⌋ edge guards

The first positive result in this direction was given by O’Rourke [O’R83], which was for mobile guards. By
allowing the guards to move along diagonals joining vertices of 𝑃 , i.e. using mobile guards, he proved the
following:

Theorem 11. [O’R83] ⌊𝑛4 ⌋ mobile guards are always sufficient and occasionally necessary to guard any polygon
with n vertices.

Proof Idea: O’Rourke’s proof is based on induction on the number of vertices of 𝑃𝑛 . He first establishes the
result for polygons with up to nine vertices as base case. As the inductive step, for polygons with more
than nine vertices, he considers a triangulation T of 𝑃𝑛 . Then he shows that this triangulation contains
a diagonal that cuts 𝑃𝑛 into two polygons, 𝑃 ′ and 𝑃 ′′, one of which, say 𝑃 ′, contains between five and
eight edges of 𝑃 . He then finds a solution for 𝑃 ′ that can be used with any solution of 𝑃 ′′ to obtain a so-
lution for 𝑃𝑛 . It was also shown that O’Rourke’s proof of Theorem 11 can be implemented in linear time [O’R83]. □

An interesting problem arose at this stage. As defined before a triangulation graph is a maximal outer planar
graph, i.e. a Hamiltonian planar graph which contains 𝑛 vertices and 2𝑛-3 edges, and all of whose internal faces
are triangles. O’Rourke showed that there are triangulation graphs with n vertices such that any set of edges that
covers their triangular faces requires ⌊ 2𝑛7 ⌋ edges. Shermer later found examples of triangulation graphs that
require ⌊ 3𝑛10 ⌋ edge guards to cover them. Since this number is greater than ⌊𝑛4 ⌋ , this means that the technique of
trying to solve Toussaint’s conjecture using triangulation may not work.

Shermer [She94] showed the following important result for edge guarding of triangulated graphs:

Theorem 12. [She94] ⌊ 3𝑛10 ⌋ edge guards are always sufficient and occasionally necessary to guard any triangula-
tion graph with n vertices, with the exception of three graphs.

Proof Reference. The proof of Theorem 12 is complicated and very long, and hence is omitted from here.
Please refer to Shermer’s original paper for more details. □
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(a) (b)

Fig. 7. Tight Cases ⌊ 2𝑛7 ⌋ and ⌊
3𝑛
10 ⌋ edge guards respectively.

For spiral polygons, I. Bjorling-Sachs [BS94] and S. Viswanathan [Vis93] showed that ⌊𝑛+25 ⌋ edge guards are
always suffcient and sometimes necessary. For finding these guards, linear time algorithms are also provided in
[BS94].

Before concluding the results on classical art gallery problem, we would like to briefly mention a connection it
has with Fary’s Theorem.

Theorem 13 (Fary’s Theorem). Any simple planar graph can be drawn on a plane without crossings with
every edge as a straight-line segment.

We have defined planar graphs in Definition 8. But in general there is no requirement for the edges to be
straight i.e. they can be arbitrarily shaped lines. Hence, this theorem becomes important for many applications.
Proof Idea: For simplicity in the idea, we consider only maximally planar graphs i.e. planar graphs where addition
of any new edge makes it non-planar. From simple observation, we can claim that these maximally planar graphs
have all faces as triangles. If not, we could have added any edge inside the face and still have a planar graph, thus
contradicting the definition of maximal planar graph. The proof idea begins with fixing one the faces as a triangle
to act as the outer triangular face, and then shows that the rest of the graph can be drawn with straight lines
using induction. Suppose we have shown the result for planar graph with 𝑛 vertices. Now, for the graph with
𝑛 + 1 vertices, we know that there will be a vertex with degree ⩽ 5 in the graph, and can assume it is not one of
the vertices in the outer triangular face for simplicity. On removing this vertex (along with incident edges), we
get a graph with 𝑛 vertices. To keep it maximal planar, we triangulate this face. Now, by induction, we can draw
this graph in plane with straight edges. Now we can remove the extra edges which we added to make the 𝑛 vertex
graph maximal planar. The only part that remains is to re-add the vertex and its incident edges (as straight lines)
back into this new embedding. Here, we can use the results from art gallery. The face in question will have at
most five sides, and we need at most ⌊ 53 ⌋ = 1 guards to cover the gallery. If it covers the gallery, it also sees all the
vertices of the face (i.e. all vertices are visible to it). On placing the (𝑛 + 1)𝑡ℎ vertex here, we can therefore connect
it to all of the other vertices with straight lines. This gives the desired embedding of the graph with𝑛+1 vertices. □

4.2 Orthogonal Art Gallery
With the original problem of Chvátal solved, interest turned to different variations of the AGP. One such version
is when instead of a general polygon, the gallery is assumed to be bounded by an orthogonal polygon. In 1980,
Kahn, Klawe, and Kleitman proved that :
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Theorem 14 (Kahn, Klawe and Kleitman). [KKK83] For any orthogonal polygon with n vertices, ⌊𝑛4 ⌋ vertex
guards are always sufficient to guard it. There exist polygons (as shown in 8), where ⌊𝑛4 ⌋ vertex guards are necessary.

Fig. 8. Tight case for Theorem 14 where ⌊𝑛4 ⌋ guards always required. Here, 𝑛 = 16, 𝑔 = 4 (shown with red nodes).

Proof Idea: The proof by Kahn, Klawe and Kleitman uses the same technique which was used by Fisk for proving
the ⌊𝑛3 ⌋ bound for classical art gallery. For orthogonal art gallery, the main idea of the proof is to partition the
orthogonal polygon into convex quadrilaterals. Then, internal diagonals of each of these quadrilaterals are added,
and the obtained graph is four-vertex colored. Finally, we pick the minimum size color class and place guards
there, which is a valid positioning as it covers the entire art gallery because for each quadrilateral, we have a
guard at one of its vertices. A guard at the vertex of the convex quadrilateral covers the quadrilateral, and we
have one guard at each quadrilateral, hence the whole gallery is covered. The bound here is ⌊𝑛4 ⌋ as average
of the sizes of color classes will be 𝑛

4 , and minimum is smaller than or equal to average. An interesting fact is
that Kahn, Klawe and Kleitman’s result provided an incentive to study the problem of decomposing a rectilin-
ear polygon into convex quadrilaterals. The first𝑂 (𝑛) algorithm to achieve this was obtained by Sack [SoCS84]. □

Győri and O’Rourke presented clear and brief confirmation of Theorem 14 separately in the first half of the
1980s.

Theorem 15. [Gyö86][O’r87, Theorem 2.5] It is possible to divide of orthogonal polygon of 𝑛 vertices into ⌊𝑛4 ⌋
orthogonal polygons of at most 6 vertices.

In certain ways, Theorem 15 is a deeper outcome than that of Kahn, Klawe, and Kleitman, as a stationary guard
will protect any plain orthogonal polygon of 6 vertices. So far, each evidence sheds light on a fascinating concept
that we shall refer to as the "metatheorem":

Metatheorem 1. [Mez17, Metatheorem of art galleries] Each theorem of the (orthogonal) art gallery has an
underlying partition theorem (in simple terms).

The metatheorem is also verified by proof of the sharp bound on mobile guards in simple polygons according
to Theorem 9. Although both Theorem 14 and Theorem 15 are only related to art galleries, Hoffman showed that
for any closed area bounded by parallel line segments of the axes, the same bound applies.

Theorem 16. [Hof90] Any orthogonal polygon with holes of a total of 𝑛 vertices can be partitioned into ⌊𝑛4 ⌋
rectangular stars of at most 16 vertices.

The Metatheorem 1 is also confirmed by Theorem 16. Hoffmann and Kaufmann provided an appropriate
algorithm to create such a partition soon after this result. We offer further proof that the metatheorem holds,
namely that the following partition theorem is proved:

Theorem 17 (Győri and Mezei). Any simple orthogonal polygon of 𝑛 vertices can be partitioned into at most
⌊ 3𝑛+416 ⌋ orthogonal polygons of at most 8 vertices.
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The follwoing bound holds w.r.t the number of reflex vertices in the art gallery:

Theorem 18. [CHH] For an orthogonal polygon ⌊𝑟/2⌋ +1 guards are always sufficient and occasionally necessary
to guard the whole polygon, where 𝑟 is the number reflex vertices.

Fig. 9. An orthogonal polygon with 44 vertices and 4 holes that requires 12 vertex guards.

4.2.1 Holes in Orthogonal Art Gallery.
In 1982, O’Rourke [O’r87] proved that any orthogonal polygon with n vertices and h holes can always be guarded
with⌊𝑛+2ℎ4 ⌋ vertex guards. His proof was similar to the proof for classical art gallery with holes. Further, he
conjectured that ⌊𝑛4 ⌋ point guards are always sufficient to guard the art gallery. Aggarwal [Agg84] was able to
verify this conjecture for number of holes ℎ = 1, 2. It remained as an open conjecture until in 1990, F. Hoffmann
[Hof90] proved:

Theorem 19. [Hof90] ⌊𝑛4 ⌋ point guards are always sufficient to guard any orthogonal art gallery with n vertices
and h holes.

The above theorem was for point guards. For vertex guards, the best known upper bound, as mentioned
above about O’Rourke’s bound, remains at ⌊𝑛+2ℎ4 ⌋. Many situations are known where ⌊𝑛4 ⌋ vertex guards are not
sufficient to guard orthogonal polygons with many holes. For example, the polygon shown in Figure 9 , with
44 vertices and 4 holes, requires 12 vertex guards. This example, which can easily be generalized, inspired T.
Shermer [O’r87] to make the following conjecture:

Conjecture 3. [O’r87] ⌊𝑛+ℎ4 ⌋ vertex guards are sufficient to cover any orthogonal polygon with n vertices and h
holes.

For the case when h is large enough ℎ ⩾ 𝑛
6 − 2, O’Rourke’s upper bound of ⌊𝑛+2ℎ4 ⌋ on the number of vertex

guards needed to guard an orthogonal art gallery with holes was achieved by Hoffman and Kriegel [HK93]. They
proved:

Theorem 20. [HK93] ⌊𝑛3 ⌋ vertex guards are always sufficient to guard an orthogonal polygon with holes.

Proof Idea: Their proof requires knowing the following result about planar bipartite graphs :

Lemma 2. Any planar triangulated graph is 3-vertex colorable iff all its vertices have even degree.

To prove their result, they first partition the orthogonal polygon into convex quadrilaterals, and then
triangulate the resulting graph in such a way that every vertex has even degree. Then they use Lemma 2 and
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infer that any planar triangulated graph is 3-vertex colorable iff all its vertices have even degree. Their result
leads to an 𝑂 (𝑛2) time algorithm. □

All of the results we have seen propose an upper bound on the sufficient number of vertex guards. However,
how much tighter can it be made? For the lower bound on these sufficiencies, Hoffman showed a family of
orthogonal polygons with holes which require ⌊ 2𝑛7 ⌋ vertex guards as shown in figure using the tight example
Figure 10. This disproved an earlier conjecture by Aggarwal [Agg84] that ⌊ 3𝑛11 ⌋ were always sufficient.These
family of polygons also suggest that we cannot hope to get a result which proposes upper bound smaller than
⌊ 2𝑛7 ⌋. Following this, Hoffman made the following conjecture:

Fig. 10. Hoffman’s family of polygons requiring 2𝑛
7 guards (One possible placement is shown with red nodes)

Conjecture 4. ⌊ 2𝑛7 ⌋ vertex guards are always sufficient to guard any orthogonal polygon with holes.

Remember that Shermer’s conjecture was for the bound of ⌊𝑛+ℎ4 ⌋, and Hoffman’s polygons are not disproving
Shermer’s conjecture that ⌊𝑛+ℎ4 ⌋ vertex guards are sufficient to cover any orthogonal polygon. Interestingly,
Hoffman’s polygons have 𝑛 = 14𝑘 vertices and ℎ = 2𝑘 holes, and for this particular choice of numbers,
⌊ 2𝑛7 ⌋ = ⌊

𝑛+ℎ
4 ⌋.

4.2.2 Edge and Mobile Guards in Orthogonal Art Gallery.

A mobile guard, as defined in 15 is one that is willing to patrol a line segment of the museum. The upper bound
of the theorem of the mobile guard art gallery for orthogonal polygons follows immediately from Theorem 17, as
a mobile guard can cover an orthogonal polygon of at most 8 vertices.
Another result for mobile guards in orthogonal polygons was shown by A. Aggarwal [Agg84], as follows:

Theorem 21. [Agg84] ⌊ 3𝑛+416 ⌋ mobile guards are sufficient and occasionally necessary as shown in Fig Figure 11
to cover any orthogonal polygon with n vertices.

Proof Idea: The proof of Aggarwal’s result is interesting, but rather long and complicated, and hence details are
omitted from here. The complete proof can be found in [O’r87]. Interestingly, Aggarwal’s proof for Theorem 21
leads to an 𝑂 (𝑛2𝑙𝑜𝑔𝑛) time algorithm using Sack’s or Lubiw’s quadrilaterization algorithms. □

The lower bound for Theorem 21 and Theorem 17 is given by a sequence of swatikas ( Figure 12 ) stringing
together. Note that, for a limit of one arm, a mobile guard can cover certain points of the end of a swastika arm.
Therefore, any arm must be equipped with a mobile guard. A spiral needs to be attached to one of the arms for
𝑛 = 0(𝑚𝑜𝑑16).
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Fig. 11. Tight Cases ⌊ 3𝑛+416 ⌋ mobile guards.

A better finding than Theorem 17 is Theorem 21, and it is interesting on its own. It falls into the set of findings
in [[Gyö86];[O’r87, Theorem 2.5]; [GHKS96]] showing that theorems of orthogonal art gallery are focused on
partition theorems in smaller parts (’one guardable’).

In addition, the following corollary that confirms the previous theorem and addresses two questions posed by
O’Rourke [O’r87, Theorem 3.4] explicitly implies Theorem 17.

Corollary 1 (Győri and Mezei). ⌊ 3𝑛+416 ⌋ mobile guards are adequate to cover a basic orthogonal polygon of
𝑛-vertex such that the two guards’ patrols do not pass through each other and only at the endpoints of the patrols is
visibility required.

Fig. 12. The dashed lines show a minimum cardinality partition into at most 8-vertex pieces.Not to scale

In his 1987 book entitled ’Art Gallery Theorems and Algorithms’ [O’r87], Joseph O’Rourke pointed out that
there is a curious 4 : 3 ratio between the extreme number of points and mobile guards for art galleries provided
by both simple polygons and simple orthogonal polygons.

Aggarwal’s result was generalized to orthogonal polygons with holes by Gyory, Hoffmann, Kriegel and Shermer
[GHKS96]. They proved:

Theorem 22. [GHKS96] ⌊ 3𝑛+4ℎ+416 ⌋ mobile guards are always sufficient and occasionally necessary to guard an
orthogonal polygon.

For spiral orthogonal polygons, I. Bjorling-Sachs [BS94] proved that ⌊𝑛−26 ⌋ edge guards are always sufficient,
and occasionally necessary. There’s also a linear time algorithm provided to find these guards.

5 APPROXIMATION ALGORITHMS
We begin with defining approximation algorithms and approximation guarantee.
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Fig. 13. Tight Cases ⌊ 3𝑛+4ℎ+416 ⌋ mobile guards.

Definition 16 (Approximation Guarantee). For a minimization problem Π, an algorithmA has approxima-
tion guarantee of 𝛼 (𝛼 > 1), if A(𝐼 ) ⩽ 𝛼 𝑂𝑃𝑇 (𝐼 ) for all input instance 𝐼 of Π. For a maximization problem Π′, an
algorithm A has approximation guarantee of 𝛼 (𝛼 > 1), if 𝑂𝑃𝑇 (𝐼 ) ⩽ 𝛼 A(𝐼 ) for all input instance 𝐼 of Π′.

Definition 17 (Polynomial Time Approximation Scheme (PTAS)). A minimization problem Π admits
PTAS if for every constant 𝜀 > 0, there exists a (1 + 𝜀)-approximation algorithm with running time 𝑂 (𝑛𝑓 (1/𝜀) ), for
any function 𝑓 that depends only on 𝜀.

The class APX (an abbreviation of "approximable") is the set of NP optimization problems that allow polynomial-
time approximation algorithms with approximation ratio bounded by a constant (or constant-factor approximation
algorithms for short).

Definition 18 (APX-Harndess). A problem is said to be APX-hard if there is a PTAS reduction from every
problem in APX to that problem.

If the running time of a PTAS is 𝑂 (𝑓 (1/𝜀) 𝑛𝑐 ) for some function 𝑓 and a constant 𝑐 that is independent
of 1/𝜀, we call it Efficient PTAS (EPTAS), If the running time of a PTAS is polynomial in both 𝑛 and 1/𝜀, we
call it Fully PTAS (FPTAS). Quasi-polynomial time approximation scheme (QPTAS) and pseudo-polynomial
time approximation scheme (PPTAS) are defined analogously as PTAS, however, their running times are
quasi-polynomial (i.e., 𝑛 (log𝑛)𝑐 for some constant 𝑐 > 1) and pseudo-polynomial time, respectively. Asymptotic
analogue of PTAS, EPTAS, FPTAS are known as APTAS, AEPTAS, AFPTAS, respectively. We refer the reader to
[CKPT17] for more on these approximation schemes and their connections with hardness assumptions.

The section is divided in 4 subsections. In Section 5.1, we establish inapproximability results for various
versions of AGP. In Section 5.2, we state the 𝑂 (𝑙𝑜𝑔𝑛)-approximation result by Ghosh, realised by a reduction
to Set Cover Problem. Further, we state 𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 ) result by Miltzow et al. in Section 5.3. We then deviate to
variant of the problem, with weak visibility polygons, and state the result of 6-approximation by Ghost et al.
[Section 5.4]. In the end, in Section 5.5 we quote some more results for AGP.

5.1 Inapproximability Of AGP
In 2001, Eidenbenz et al. [ESW01] established inapproximability results for most of the variants of AGP proving
that there is no 𝑐-approximation algorithm for simple polygons; for some constant 𝑐; exists for vertex, edge or
point guard variants. The inapproximability holds even if only bounday has to be gaurded, i.e. for Vertex-Boundary
(VBG), Point-Boundary (PBG) and Edge-Boundary (EBG) guard variants. The inapproximability results for simple
polygons without holes can be summarized as follows:
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Theorem 23. [ESW01] Vertex, Point and Edge guards variants of AGP (VG, PG, EG) in simple polygons are
𝐴𝑃𝑋 − ℎ𝑎𝑟𝑑 . Also Vertex-Boundary (VBG), Point-Boundary (PBG) and Edge-Boundary (EBG) guard variants of
AGP in simple polygons are 𝐴𝑃𝑋 − ℎ𝑎𝑟𝑑 .

Proof Idea: The proof is done using gap-preserving reductions from 5 −𝑂𝐶𝐶𝑈𝑅𝑅𝐸𝑁𝐶𝐸 −𝑀𝐴𝑋 − 3 − 𝑆𝐴𝑇 . □

Eidenbenz et al. [ESW01] futher extended the inpproximability results for polygons with holes proving that
there exists no 𝑜 (𝑙𝑜𝑔𝑛)-approximation algorithm running in polynomial time, unless 𝑁𝑃 ⊆ 𝑇 𝐼𝑀𝐸 (𝑛𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔𝑛)).
We can summarize the inapproximatibility results for polygon with holes as follows:

Theorem 24. [ESW01] There exists no polynomial time algorithm for Vertex Guard (VG), Point Guard (PG)
or Edge Guard (EG) AGP with an approximation ratio better than ( (1−𝜀)12 ) (𝑙𝑛𝑛) for every 𝜀 > 0, unless 𝑁𝑃 ⊆
𝑇 𝐼𝑀𝐸 (𝑛𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔𝑛)), where n is the number of vertices of input polygon.

5.2 𝑂 (𝑙𝑜𝑔𝑛)−Approximation [Gho10]
A simple polygon is called a fan if there exists a vertex that is visible from all points in the interior of the polygon.
Intuitively the algorithm builds up as follows: First discretize the entire region of a polygon and then use the
minimum set-cover solution. The vertex guard problem can be treated as a polygon decomposition problem in
which the decomposition pieces are fans. The polygonal region of P is decomposed into convex components
where every component is bounded by segments that contains any two vertices of the polygon. Every convex
component must lie in at least one of the fans chosen by the approximation algorithm.
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Fig. 14. (A) A simple polygon. (B) Dotted line separating upper fan polygon.

We now begin with the formal framework used in the algorithm. Consider a simple polygon 𝑃 with its
vertices labelled as 𝑣1, 𝑣2, ....𝑣𝑛 in clockwise order. Let the boundary of polygon be 𝑏𝑑 (𝑃), and 𝑏𝑑𝑐 (𝑝, 𝑞) be the
clockwise boundary from 𝑝 to 𝑞. Similarly, we define 𝑏𝑑𝑐𝑐 (𝑝, 𝑞) be the counter-clockwise boundary from 𝑝 to
𝑞. We can observe that these definitions give us 𝑏𝑐 (𝑝, 𝑞) = 𝑏𝑐𝑐 (𝑞, 𝑝), and 𝑏𝑑 (𝑃) = 𝑏𝑐 (𝑝, 𝑝) = 𝑏𝑐𝑐 (𝑝, 𝑝). For any
point 𝑧, we define a visibility polygon 𝑉𝑃 (𝑧) as the set of all points in 𝑃 that are visible from 𝑧. Mathematically,
𝑉𝑃 (𝑧) = {𝑞 ∈ 𝑃 : 𝑞 is visible from 𝑧}. The edges of this visibility polygon may not necessarily be all on the
boundary of the original polygon. These non-polygonal edges will be called as constructed edges. Now, notice
that for these constructed edges, one of the endpoints will be a vertex of 𝑃 (call it 𝑣𝑖 ), while the other will lie
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Fig. 15. Visibility polygon 𝑉𝑃 (𝑣2); Weak visibility polygon 𝑉𝑃 (𝑣16𝑣17); some shaded pockets.

on the 𝑏𝑑 (𝑃) (call it 𝑢𝑖 ). These points 𝑧, 𝑣𝑖 , and 𝑢𝑖 will also be collinear. An example can be seen in Figure 15,
consider 𝑉𝑃 (𝑣2) and the constructed edges 𝑣6𝑢6 and 𝑣7𝑢7. We will now define weak visibility. Consider an edge
or an internal chord 𝑏𝑐 . We call a point 𝑞 of 𝑃 as weakly visible from 𝑏𝑐 if there is a point on 𝑏𝑐 from which 𝑞 is
visible. In other words, 𝑞 is weakly visible from 𝑏𝑐 if there exists a point 𝑧 on 𝑏𝑐 such that 𝑞 is visible from 𝑧. We
can now define weak visibility polygon of 𝑃 from 𝑏𝑐 𝑉𝑃 (𝑏𝑐) as set of all points of 𝑃 which are weakly visible
from 𝑏𝑐 . Further, if there is an edge of 𝑃𝑣𝑖𝑣𝑖+1 such that 𝑉𝑃 (𝑣𝑖𝑣𝑖+1) = 𝑃 , then 𝑃 is called a weak visibility polygon.
𝑉𝑃 (𝑏𝑐) has both polygonal edges and constructed edges defined similar to 𝑉𝑃 (𝑧). We call a constructed edge
𝑣𝑖𝑢𝑖 as right constructed edge if 𝑣1 belongs to 𝑏𝑑𝑐 (𝑣𝑖𝑢𝑖 ), otherwise it is called a left constructed edge.

Definition 19 (Minimum set-covering problem). Given a finite family 𝐶 of sets 𝑆1, ..., 𝑆𝑛 , the problem is to
determine the minimum cardinality 𝐴 ⊆ 𝐶 such that
∪𝑖∈𝐴𝑆𝑖 = ∪𝑛𝑗=1𝑆𝑛

The problem of finding the minimum number of fans to cover P is same as the minimum set-covering problem,
where every fan is a set and convex components are elements of the set.

Algorithm 1 Algo-Spiral(𝐶)
1: Draw lines through every pair of vertices of 𝑃 and compute all convex components 𝑐1, 𝑐2, ..., 𝑐𝑚 of 𝑃 . Let 𝐶 =

(𝑐1, 𝑐2, ..., 𝑐𝑚), 𝑁 = (1, 2, ..., 𝑛) and 𝑄 = 𝜙 .
2: For 1 ⩽ 𝑗 ⩽ 𝑛, construct the set 𝐹 𝑗 by adding those convex components of 𝑃 that are totally visible from the

vertex 𝑣 𝑗 .
3: Find 𝑖 ∈ 𝑁 such that |𝐹𝑖 | ⩾ |𝐹 𝑗 | for all 𝑗 ∈ 𝑁 and 𝑖 ≠ 𝑗 .
4: Add 𝑖 to 𝑄 and delete 𝑖 from 𝑁 .
5: For all 𝑗 ∈ 𝑁 , 𝐹 𝑗 ← 𝐹 𝑗 − 𝐹𝑖 , and 𝐶 ← 𝐶 − 𝐹𝑖 .
6: If |𝐶 | ≠ 𝜙 then goto Step 3.
7: Output the set 𝑄 and Stop.
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Theorem 25. [Gho10] The approximation algorithm for the minimum vertex guard problem (VG) in a polygon 𝑃
of𝑛 vertices computes solutions that are at most𝑂 (𝑙𝑜𝑔𝑛) times the optimal. If 𝑃 is a simple polygon, the approximation
algorithm runs in 𝑂 (𝑛4) time. If 𝑃 is a polygon with holes, the approximation algorithm runs in 𝑂 (𝑛5) time.

Algorithm 2 Algo-Fans(𝐶)
1: Draw lines through every pair of vertices of 𝑃 and compute all convex components 𝑐1, 𝑐2, ..., 𝑐𝑚 of 𝑃 . Let 𝐶 =

(𝑐1, 𝑐2, ..., 𝑐𝑚), 𝑁 = (1, 2, ..., 𝑛) and 𝑄 = 𝜙 .
2: For 1 ⩽ 𝑗 ⩽ 𝑛, construct the set 𝐸 𝑗 by adding those convex components of 𝑃 that are totally visible from the

edge 𝑒 𝑗 .
3: Find 𝑖 ∈ 𝑁 such that |𝐸𝑖 | ⩾ |𝐸 𝑗 | for all 𝑗 ∈ 𝑁 and 𝑖 ≠ 𝑗 .
4: Add 𝑖 to 𝑄 and delete 𝑖 from 𝑁 .
5: For all 𝑗 ∈ 𝑁 , 𝐸 𝑗 ← 𝐸 𝑗 − 𝐸𝑖 , and 𝐶 ← 𝐶 − 𝐸𝑖 .
6: If |𝐶 | ≠ 𝜙 then goto Step 3.
7: Output the set 𝑄 and Stop.

Theorem 26. [Gho10] For the minimum edge guard problem (EG) in an 𝑛-sided polygon 𝑃 , an approximate
solution can be computed which is at most 𝑂 (𝑙𝑜𝑔𝑛) times the optimal. If 𝑃 is a simple polygon, the approximation
algorithm runs in 𝑂 (𝑛4) time. If 𝑃 is a polygon with holes, the approximation algorithm runs in 𝑂 (𝑛5) time.

Any set consisting of arbitrary chosen convex components may not form a fan as every fan consists of
contiguous convex components. Therefore, constructing any example where the greedy algorithm takes 𝑂 (𝑙𝑜𝑔𝑛)
times optimal does not seem to be possible.

5.3 O(logOPT)-Approximation [BM16]
Subir K Ghosh conjectured in 1987 the existence of a constant-factor approximation algorithm for Vertex and
Edge Guard AGP, but there has been no result backing up the conjecture. First result in this direction was given in
2007, by Deshpande et al. [DKDS07] who gave a randomized pseudo-polynomial time𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 )-approximation
algorithm. The algorithm runs in time polynomial in 𝑛, where 𝑛 is the number of walls and the spread. However in
2016, Miltzow et al. [BM16] found a bug in their results by giving a counterexample for their algorithm. Deriving
from their ideas, Miltzow et al. gave an 𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 )-approximation algorithm for Point Guard AGP. This is the
first correct randomized polynomial-time approximation algorithm for Point Guard AGP for simple polygons.
The proof required 2 assumptions as follows:

(1) (integer vertex representation). Vertices are given by integers, represented in binary.
(2) (general position assumption). No three extensions meet in a point of P which is not a vertex and no three

vertices are collinear where extension is a line obtained by extending the line-segment obtained by joining
two points in both directions.

The basic idea derives from the general notion that Point Guard AGP can be seen as a geometric hitting set
problem with an infinite set system. The only problem is that it still stands as an open problem to find a method
the universe with an infinite set system to a finite number of elements. Assuming integer coordinates 1 gives
useful lower bounds on distances between any two objects of interest that do not share a point as well as bounds
the distance between any two vertices is by at least 1. The central technical component of the proof involves
proving Global Visibility Containment Lemma 3. The main result is summarized as:
Theorem 27. [BM16] Given |𝑂𝑃𝑇 | as the cardinality of optimal solution, under Assumptions 1 and 2, there is a

randomized𝑂 (𝑙𝑜𝑔|𝑂𝑃𝑇 |)-approximation algorithm for Point Guard AGP for simple polygons that runs in polynomial
time in the size of the input.
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Proof Idea: The main technical idea is to show the following lemma:

Lemma 3 (Global Visibility Containment). Let P be some (not necessarily simple) polygon. Under Assump-
tions 1 and 2, it holds that there exists a grid Γ and a guard set 𝑆𝑔𝑟𝑖𝑑 ⊆ Γ, which sees the entire polygon and
|𝑆𝑔𝑟𝑖𝑑 | = 𝑂 ( |𝑆 |), where 𝑆 is an optimal guard set.

From the above lemma it can be seen that the local visibility property holds for every point x that is far enough
away from all extension lines. It can further be shown that it is impossible to be close to more than 2 extensions
at the same time. □

For future directions what remains is to prove that Lemma 3 could be established without Assumption 2,
but currently there are no results regarding the same and it remains as an open problem. Besides this, an
important extension to this work can be done by proving 𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 )-approximation for polygon with holes.
Another improvement could be obtaining super-constant inapproximability under standard complexity theoretic
assumptions or improved approximation algorithms with a super-constant approximation factor.

5.4 6-Approximation for Weak Visibility Polygons [BGR15]
From have established that inapproximability of most of the variants of AGP proving that there is no 𝑐-
approximation algorithm for simple polygons, for some constant 𝑐 . For polygons with holes, they can even show
that there is no 𝑜 (𝑙𝑜𝑔𝑛)-approximation algorithm

Theorem 28. [ESW01][SW] For weak visibility polygons with holes, there cannot exist a polynomial time
algorithm for the Vertex Guard AGP with an approximation ratio better than ( (1−𝜀)12 ) (𝑙𝑛𝑛) for every 𝜀 > 0, unless
𝑁𝑃 = 𝑃 .

We present a 6 − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 algorithm given by Ghosh et al., which has running time 𝑂 (𝑛2), for vertex
guarding polygons that are 𝑤𝑒𝑎𝑘𝑙𝑦 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 from an edge 𝑢𝑣 and contain no holes. We begin by deifning a key
structure used for the algorihtm as follows:

Definition 20 (Shortest Path Tree). The shortest path tree of simple polygon 𝑃 rooted at vertex 𝑠 of 𝑃 , denoted
by 𝑆𝑃𝑇 (𝑠), is defined as the union of Euclidean shortest paths from 𝑠 to all the vertices of polygon 𝑃 . Moreover, this
𝑆𝑃𝑇 (𝑠) is a planar tree, rooted at 𝑠 , which has 𝑛 nodes, namely the vertices of 𝑃 .

For every vertex 𝑥 of 𝑃 , let 𝑝𝑢 (𝑥) and 𝑝𝑣 (𝑥) denote the parent of 𝑥 in 𝑆𝑃𝑇 (𝑢) and 𝑆𝑃𝑇 (𝑣) respectively. In the
same way, for every interior point 𝑦 of 𝑃 , let 𝑝𝑢 (𝑦) and 𝑝𝑣 (𝑦) denote the vertex of 𝑃 next to 𝑦 in the Euclidean
shortest path to 𝑦 from 𝑢 and 𝑣 respectively as depicted in Figure 16

Intuitively we use the concept of Euclidean shortest path trees from 𝑢 and 𝑣 for choosing vertices for placing
guards. Let 𝑃 be a simple polygon which is weakly visible from its edge 𝑢𝑣 . Suppose a guard is placed on every
non-leaf vertex of 𝑆𝑃𝑇 (𝑢) and 𝑆𝑃𝑇 (𝑣). It is obvious that these guards see all points of 𝑃 . However, the number
of guards required may be very large compared to the size of an optimal guarding set. In order to reduce the
number of guards, placing guards on every non-leaf vertex should be avoided. Let 𝐴 be a subset of vertices of 𝑃 .
Let 𝑆𝐴 denote the set which consists of the parents 𝑝𝑢 (𝑧) and 𝑝𝑣 (𝑧) of every vertex 𝑧 ∈ 𝐴. Then, 𝐴 should be
chosen such that all vertices of 𝑃 are visible from guards placed at vertices of 𝑆𝐴. Algorithm 3 presents a method
for choosing 𝐴 and 𝑆𝐴.

Lemma 4. Any guard 𝑔 ∈ 𝑂𝑃𝑇 that sees vertex 𝑧 of 𝑃 must lie on 𝑏𝑑𝑐 (𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)).

Lemma 5. Let 𝑧 be a vertex of 𝑃 such that all vertices of 𝑏𝑑𝑐 (𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)) are visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧). For
every vertex 𝑥 lying on 𝑏𝑑𝑐 (𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)), if 𝑥 sees a vertex 𝑞 of 𝑃 , then 𝑞 must also be visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧).
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Fig. 16. Euclidean shortest path tree rooted at s.

Algorithm 3 Algo-SPT-Vertices(𝐶)
1: Compute 𝑆𝑃𝑇 (𝑢) and 𝑆𝑃𝑇 (𝑣)
2: Initialize all the vertices of 𝑃 as unmarked
3: Initialize 𝐴← 𝜙 , 𝑆𝐴 ← 𝜙 and 𝑧 ← 𝑢

4: while 𝑧 ≠ 𝑣 do
5: 𝑧 ← the vertex next to 𝑧 clockwise on 𝑏𝑑𝑐 (𝑢, 𝑣)
6: if 𝑧 is unmarked then
7: 𝐴← 𝐴 ∪ {𝑧} and 𝑆𝐴 ← 𝑆𝐴 ∪ {𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)}
8: Place guards on 𝑝𝑢 (𝑧) and 𝑝𝑣 (𝑧)
9: Mark all vertices of 𝑃 visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧)
10: end if
11: end while
12: return the guard set 𝑆𝐴

𝑧1

𝑢 𝑣
𝑝𝑣1

𝑝𝑣2

𝑝𝑣3

𝑝𝑣𝑘
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𝑧3

𝑝𝑢3

𝑧2

𝑝𝑢2

Fig. 17. Worst Case Example for Algorithm 3
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Lemma 6. If every vertex 𝑧 ∈ 𝐴 is such that every vertex of 𝑏𝑑𝑐 (𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)) is visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧), then
|𝐴| ⩽ |𝑂𝑃𝑇 |.

Lemma 7. If every vertex 𝑧 ∈ 𝐴 is such that all vertices of 𝑏𝑑𝑐 (𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)) are visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧), then
|𝑆𝐴 | ⩽ 2|𝑂𝑃𝑇 |.

Algorithm 4 Algo-SPT-Interior(𝐶)
1: Compute 𝑆𝑃𝑇 (𝑢) and 𝑆𝑃𝑇 (𝑣)
2: Initialize all the vertices of 𝑃 as unmarked
3: Initialize 𝐵 ← 𝜙 , 𝑆𝐵 ← 𝜙 and 𝑧 ← 𝑢

4: while ∃ unmarked vertex in 𝑃 do
5: 𝑧 ← the first unmarked vertex on 𝑏𝑑𝑐 (𝑢, 𝑣) from 𝑧

6: if every unmarked vertex of 𝑏𝑑𝑐 (𝑧, 𝑝𝑣 (𝑧)) is visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧) then
7: 𝐵 ← 𝐵 ∪ {𝑧}&𝑆𝐵 ← 𝑆𝐵 ∪ {𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)}
8: Mark all vertices visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧)
9: 𝑧 ← 𝑝𝑣 (𝑧)
10: else
11: 𝑧 ′← the first unmarked vertex on 𝑏𝑑𝑐 (𝑧, 𝑣)
12: while every unmarked vertex of 𝑏𝑑𝑐 (𝑝𝑢 (𝑧 ′), 𝑧 ′) is visible from 𝑝𝑢 (𝑧 ′) or 𝑝𝑣 (𝑧 ′) do
13: 𝑧 ← 𝑧 ′

14: 𝑧 ′← the first unmarked vertex on 𝑏𝑑𝑐 (𝑧 ′, 𝑣)
15: end while
16: 𝐵 ← 𝐵 ∪ {𝑧}&𝑆𝐵 ← 𝑆𝐵 ∪ {𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)}
17: Mark all vertices visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧)
18: 𝑦 ← 𝑧

19: while ∃ an unmarked vertex on 𝑏𝑑𝑐 (𝑢, 𝑧) do
20: 𝑦 ← first unmarked vertex on 𝑏𝑑𝑐𝑐 (𝑝𝑢 (𝑦), 𝑢)
21: 𝐵 ← 𝐵 ∪ {𝑦}&𝑆𝐵 ← 𝑆𝐵 ∪ {𝑝𝑢 (𝑦), 𝑝𝑣 (𝑦)}
22: Mark all vertices visible from 𝑝𝑢 (𝑦) or 𝑝𝑣 (𝑦)
23: end while
24: end if
25: end while
26: return the guard set 𝑆𝐵

Lemma 8. |𝐵 | ⩽ 2|𝑂𝑃𝑇 |.

Lemma 9. |𝑆𝐵 | ⩽ 4|𝑂𝑃𝑇 |.

Proof. We have |𝑆𝐵 | = 2|𝐵 |. Also, by Lemma 5, |𝐵 | ⩽ 2|𝑂𝑃𝑇 |. So, |𝑆𝐵 | = 2|𝐵 | ⩽ 4|𝑂𝑃𝑇 |. While the guard set
𝑆𝐵 is guaranteed to see all vertices of 𝑃 , it may not always be true that all interior points of 𝑃 are also visible from
guards in 𝑆𝐵 . As in Figure 18, while scanning 𝑏𝑑𝑐 (𝑢, 𝑣), Algorithm 4 places guards at 𝑝𝑢 (𝑧) and 𝑝𝑣 (𝑧) as all vertices
of 𝑏𝑑𝑐 (𝑝𝑢 (𝑧), 𝑝𝑣 (𝑧)) become visible from 𝑝𝑢 (𝑧) or 𝑝𝑣 (𝑧). Observe that in fact all vertices of 𝑃 become visible
from these two guards. But, 𝑉𝑃 (𝑝𝑢 (𝑧)) has several left pockets and 𝑉𝑃 (𝑝𝑣 (𝑧)) has several right pockets which
intersect pairwise to create multiple invisible cells. In order to guard these invisible cells, a set 𝑆 ′ of additional
guards need to be placed. □
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𝑎1

𝑧

𝑝𝑢 (𝑧)
𝑢 𝑣

𝑝𝑣 (𝑧)

𝑑3𝑎3
𝑑2𝑎2

𝑑1 𝑐3𝑐′1

𝑐2𝑐′2
𝑐′3𝑐1

Fig. 18. Multiple invisible cells exist within the polygon that are not visible from the guards placed at 𝑝𝑢 (𝑧) and 𝑝𝑣 (𝑧).

Theorem 29. There exists an algorithm with running time 𝑂 (𝑛2) that returns a guard set 𝑆 ′ for guarding all
interior points of 𝑃 invisible from guards in 𝑆𝐵 such that |𝑆 ′ | ⩽ 2|𝑂𝑃𝑇 |.

Theorem 30. There exists an algorithm with running time 𝑂 (𝑛2) that returns a guard set 𝑆 for guarding all
interior points of 𝑃 such that |𝑆 | ⩽ 6|𝑂𝑃𝑇 |.

5.5 More Results
(1) [KK11] J. King and D. Kirkpatrick, Improved Approximation for Guarding Simple Galleries from the

Perimeter gave algorithm with Running time: 𝑛𝑂 (1) , Approximation ratio of 𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔𝑐𝑜𝑝𝑡 ).
(2) [BGM+14] S. K. Ghosh et al. Improved bounds for the conflict-free chromatic art gallery problem. Running

time: 𝑂 (𝑛2). Chromatic guard number: 𝑂 (𝑙𝑜𝑔𝑛).

6 PARAMETERIZED ALGORITHMS
In the past 25 years, parameterized complexity have come up as one of the popular and fruit-bearing approaches
for otherwise hard problem in theoretical computer science. The underlying notion lies in studying the problem
in dependence with a natural parameter. In most of the cases, this dependence on the parameter is practical i.e.
the parameter is usually small in practical-instances thereby allowing us to obtain near-polynomial running
times producing the exact-optimal solution. It is relatively a new field in Analysis of Algorithms and has already
rendered FPT algorithms for most of the hard problems including NP-Hard as well as APX-Hard problems. Thus
we define the necessary the terminology required.

Definition 21 (Parameterized Problem). [CFK+15] A Parameterized problem is a language 𝐿 ⊆ Σ∗ × 𝑁 ,
where Σ is a fixed, finite alphabet. For an instance (𝑥, 𝑘) ∈ Σ∗ × 𝑁 , 𝑘 is called the parameter.

This brings to think of possible algorithms and running times for the Parameterized Problems. We first define
algorithms with running time 𝑓 (𝑘)𝑛𝑂 (1) , called as fixed-parameter algorithms, or FPT algorithms. Formally:

Definition 22 (Fixed Parameter Tractable(FPT) algorithms). [CFK+15] A Parameterized problem 𝐿 ⊂
Σ∗ × 𝑁 is called fixed parameter tractable (FPT) if there exists an algorithm 𝐴 (called a fixed parameter algorithm),
a computable function 𝑓 : 𝑁 → 𝑁 , and a constant 𝑐 such that, given (𝑥, 𝑘) ∈ Σ∗ × 𝑁 , the algorithm 𝐴 correctly
decides whether (𝑥, 𝑘) ∈ 𝐿 in time bounded by 𝑓 (𝑘).| (𝑥, 𝑘) |𝑐 . The complexity class containing all fixed-parameter
tractable problems is called FPT.

Typically the goal in Parameterized algorithmics is to design FPT algorithms, trying to make both the 𝑓 (𝑘)
factor and the constant 𝑐; which is the power of n in running time; in the bound on the running time as small
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as possible. We further define another complexity with power of 𝑛 as a function of input parameter as well as
follows:

Definition 23 (Slice-wise polynomial (XP) algorithms). [CFK+15] A Parameterized problem 𝐿 ⊂ Σ∗ × 𝑁
is called slice-wise polynomial (XP) if there exists an algorithm 𝐴 and two computable function 𝑓 , 𝑔 : 𝑁 → 𝑁 and
given (𝑥, 𝑘) ∈ Σ∗ × 𝑁 , the algorithm 𝐴 correctly decides whether (𝑥, 𝑘) ∈ 𝐿 in time bounded by 𝑓 (𝑘).| (𝑥, 𝑘) |𝑔 (𝑘) .
The complexity class containing all slice-wise polynomial problems is called XP.

FPT algorithms can be put in contrast with less efficient XP algorithms (for slice-wise polynomial), where the
running time is of the form 𝑓 (𝑘)𝑛𝑔 (𝑘) , for some computable functions 𝑓 , 𝑔. It should be noted that there is a
tremendous difference in the running times 𝑓 (𝑘)𝑛𝑔 (𝑘) and 𝑓 (𝑘)𝑛𝑂 (1) (𝑓 (𝑘)𝑛𝑐 ). In Parameterized algorithms, 𝑘 is
simply a relevant secondary measurement that encapsulates some aspect of the input instance, be it the size of
the solution sought after, or a number describing how “structured” the input instance is.

We study the problem in parameterized complexity considering the decision version of the problem where we
check if there exists a solution set of guards of size 𝑘 guarding the whole polygon. We can think of a very simple
algorithm for the vertex guard variant to check if a solution of size k exists in a polygon with n vertices which
runs in time 𝑂 (𝑛𝑘+2). This can be done by a simple brute force approach that checks all possible subsets of size k
of the vertices. The first non-trivial result for point guard variant gives an algorithm with runtime 𝑛𝑂 (𝑘) a set
of 𝑘 guards [EHP06]. It employs techniques from real algebraic geometry [BPR06]. Other than this, no major
positive results are known for the classical variant (although numerous results have been known for variants of
the problem). In the next subsection we prove lower bounds in parameterized complexity for AGP w.r.t the most
natural parameter i.e. 𝑘 , followed by a Fixed Parameter Tractable Algorithm for Vertex-Vertex AGP w.r.t number
of reflex vertices.

6.1 ETH-based lower bounds
We present the first lower bounds for the parameterized AGP restricted to simple polygons. Here, the parameter is
the optimal number k of guards to cover the polygon. A crucial assumption in proving almost every lower bound
in parameterized complexity is based on Exponential Time Hypothesis (ETH) proposed by Russell Impagliazzo
and Ramamohan Paturi. It can considered as a 𝑃 ≠ 𝑁𝑃 equivalent of parameterized complexity and is stated as
follows:

Conjecture 5. [IP01, Exponential Time Hypothesis (ETH)] The Exponential Time Hypothesis (ETH) asserts that
there is no 2𝑜 (𝑛) -time algorithm for 3 − 𝑆𝐴𝑇 on instances with 𝑛 variables.

Using the ETH, lower bounds in runtime could be established for numerous number of problems which were
"believed" to be hard were proven. Recently a breakthrough of AGP in parameterized complexity using ETH was
proved by Bonnet et al. in the form of following negative result:

Theorem 31. [BM20] [Parameterized hardness point guard] Classic Guard Art Gallery is not solvable in time
𝑓 (𝑘) 𝑛𝑜 (

𝑘
𝑙𝑜𝑔𝑘
) , even on simple polygons, where 𝑛 is the number of vertices of the polygon and 𝑘 is the number of

guards allowed, for any computable function 𝑓 , unless the 𝐸𝑇𝐻 fails.

It can futher be extended to Vertex Guard variant of AGP as follows:

Theorem 32. [BM20] [Parameterized hardness vertex guard] Vertex Guard Art Gallery is not solvable in time
𝑓 (𝑘) 𝑛𝑜 (

𝑘
𝑙𝑜𝑔𝑘
) , even on simple polygons, where 𝑛 is the number of vertices of the polygon and 𝑘 is the number of

guards allowed, for any computable function 𝑓 , unless the ETH fails.
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In the next subsection we discuss the intuitive proof by Bonnet.
Proof Idea: As mentioned earlier, assuming ETH helped establish lower bounds on running times for numerous
problems by a reduction from 3 − 𝑆𝐴𝑇 (either direct or indirect). One such problem is Structured 2-Track Hitting
Set (a variant of Hitting Set on 2-track interval graphs) which has its own lower bounds from ETH itself (follows
from a reduction from variant of Multicolored Clique) as follows:

Theorem 33. [BM20] Structured 2-Track Hitting Set is W [1]-hard. Furthermore it is not solvable in time
𝑓 (𝑘) |𝐼 |𝑜 (

𝑘
𝑙𝑜𝑔𝑘
) for any computable function 𝑓 , unless the 𝐸𝑇𝐻 fails.

Major tool employed in the proof is the ability to encode Hitting Set on interval graphs. Assume that we have
some fixed points 𝑝1, ..., 𝑝𝑛 with increasing y-coordinates in the plane. We can build a pocket far enough to the
right that can be seen only from {𝑝𝑖 , ..., 𝑝 𝑗 } for any 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 as shown in Figure 19. Considering 𝐼1, ..., 𝐼𝑛 be
𝑛 intervals with endpoints 𝑎1, ..., 𝑎2𝑛 . Then, we construct 2𝑛 points 𝑝1, ..., 𝑝2𝑛 representing 𝑎1, ..., 𝑎2𝑛 . Further, we
construct one pocket far enough to the right for each interval as described above. This way, we reduce Hitting
Set on interval graphs to a restricted version of the AGP. This observation is not so useful in itself since hitting
set on interval graphs can be solved in polynomial time.
We can see positive results if we consider Hitting Set on 2-track interval graphs. The author constructs linker
gadgets (as shown in Figure 20), which basically work as follows. We are given two set of points 𝑃 and 𝑄 and a
bijection 𝜎 between 𝑃 and 𝑄 . The linker gadget is built in a way that it can be covered by two points (𝑝, 𝑞) of
𝑃 ×𝑄 , if and only if 𝑞 = 𝜎 (𝑝). The Structured 2-Track Hitting Set problem will be specifically designed so that the
linker gadget is the main remaining ingredient to show hardness. □

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑃6
𝑃5
𝑃4

𝑃3

𝑃2

𝑃1

Fig. 19. Reduction from Hitting Set on interval graphs to a restricted version of the AGP.

6.2 FPT w.r.t reflex vertices
Very recently Lokshtanov et al. [AKL+20] gave a Fixed Parameter Tractable Algorithm running in time 𝑟𝑂 (𝑟 2)𝑛𝑂 (1)
for the Vertex-Vertex guard variant of the problem w.r.t 𝑟 i.e. number of reflex vertices in the polygon. As defined
in earlier, in Vertex-Vertex Guard (VVG) variant we have to guard all the vertices of the polygon placing guards
at vertices only. That means that both the guard-positions and positions to be guarded are vertex set of the
polygon. It is among very few positive results that concern optimal solutions for the problem and was published
at 36th International Symposium on Computational Geometry (SoCG 2020).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:28 • Modi, Parihar and Sharma

𝑐1

𝛼2

𝑑2𝑐3

𝛼4

𝑑4𝑐5

𝛼6

𝑑6

𝛼1

𝑑1𝑐2

𝛼3

𝑑3𝑐4

𝛼5

𝑑5𝑐6
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Fig. 20. Point Linker Gadget (using 3 weak linkers)

Definition 24 (Reflex Vertices). A vertex V of a polygon is a reflex vertex if its internal angle is strictly greater
than 𝜋 .

The first well-known proposition about algorithms for AGP w.r.t reflex vertices were proposed by Joseph et al
in [A+90] stating the following conjecture :

Conjecture 6. For any polygon P, the set of reflex vertices of P guards the set of all points within P.

Later a similar open problem was pitched by Giannopoulos at Lorentz Center Workshop, 2016: "Guarding
simple polygons has been recently shown to be W[1]-hard w.r.t. the number of (vertex or edge) guards. Is the
problem FPT w.r.t. the number of reflex vertices of the polygon?". One of the initial observation was that the
vertex-variant can be viewed as the classic Dominating Set problem in the visibility graph of a polygon.

Lokshtanov et al. [AKL+20] proved the following major theorem :

Theorem 34. [AKL+20, Theorem 1] Vertex-Vertex (VVG) AGP is FPT parameterized by r, the number of reflex
vertices. In particular, it admits an algorithm with running time 𝑟𝑂 (𝑟

2)𝑛𝑂 (1) .

Proof Idea: The proof follows as a result of exponential-time reduction from the considered problem to Monotone
2-CSP. Thus first step involves designing an algorithm for Monotone 2-CSP running polynomial time of the
input size. In Second step, the exponential time reduction is performed in two stages. (1) Reduction from Art
Gallery to an annotated version of Art Gallery i.e. Structured Art Gallery. Intuitively, in Structured Art Gallery
each convex region declares the number of guards it contains and also declares the number of guards required to
guard the structured guard gallery in whole. This involves guessing the important visibility relations which are
further elaborate. This blows up the reduction factor exponential as elaboration might take exponential number
of guesses to exploit all the possibilities. (2) All the guessed instances are then reduced to instances of Monotone
2-CSP (Karp Reduction). The exponential-reduction can in fact be justified as it captures the "NP-hardness" of the
problem. □

The above results can also be adapted to most general discrete annotated case of Art Gallery allowing𝐺 and 𝐶
to be any subset of the vertex set of the polygon, which can include points where the interior angle is of 180
degrees. This gives the following result:
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Theorem 35. [AKL+20, Theorem 8] Vertex-Boundary (VBG) (as well as Boundary-Vertex(BVG)) Art Gallery
is FPT parameterized by 𝑟 , the number of reflex vertices. In particular, it admits an algorithm with running time
𝑟𝑂 (𝑟

2)𝑛𝑂 (1) .

However, there have been no results on the Vertex-Point (VG) or Point-Vertex (PVG) variants of AGP and these
still remain as open problems.

7 OTHER RESULTS

7.1 Practical Iterative Algorithm for PG AGP [TdRdS13]
AGP is an NP-hard problem. We will now look at a practical iterative algorithm, which finds a sequence of
decreasing upper bounds and increasing upper bounds to reach the optimal value. Note that this algorithm is
for classical art gallery without holes, and for point guards. Let us define some more terms related to visibility.
For any point p in the polygon P, we define visibility polygon 𝑉𝑃 (𝑝) as the set of all points of P visible to p. The
edges of 𝑉𝑃 (𝑝) are called visibility edges. These definition can be extended to a finite set of points 𝑆 . The region
visible to this set 𝑆 is simply the maximal connected region in union of the visibility polygons of individual points.
Further, the visibility edges for the points in 𝑆 partition the polygon P into a collection of convex polygonal
faces called Atomic Visibility Polygons(AVP).The arrangement defined by the visibility edges of points in 𝑆 will
be denoted as 𝐴𝑟𝑟 (𝑆). The set of vertices of the AVPs of 𝐴𝑟𝑟 (𝑆) will be denoted as 𝑉 (𝑆). We now proceed with
some more terms required to understand the approach.

For a general problem, the set of points to be covered 𝑃 and the set of possible guard positions 𝑆 are all points
of the polygon, which is an infinite set. We will now look at some variations of the problem, which involve some
finite sets. In Art Gallery Problem with Fixed Guard Candidates (AGPFC), we are given a finite set of possible
guard positions 𝐶 ⊂ 𝑆 , and we are required to find the minimum guards in 𝐶 which cover the whole polygon.
The second variant, Art Gallery Problem with Witnesses (AGPW), we are given a finite set of points𝑊 ⊂ 𝑃 , and
we find the minimum number of guards to cover the set𝑊 . Note that covering𝑊 does not imply coverage of 𝑃 .
Remember that a polygon is called witnessable if there exists a finite witness set𝑊 ⊂ 𝑃 such that if any set of
guards𝑊 , then they also cover 𝑃 . The last variation which is a hybrid of the two, and brings sufficient amount of
discretization to the problem is Art Gallery Problem with Witnesses and Fixed Guard Candidates (AGPWFC), where
both the points to be covered𝑊 and the potential guard positions 𝐶 are finite. This problem can be cast as a Set
Cover Problem (SCP), where elements of𝑊 are to be covered using subsets of witness points visible to each guard
in 𝐶 . SCP is an NP- hard problem, but many efficient solvers exist for them. This is utilized in the algorithm.
The working of the algorithm rests on the following two theorems :

Theorem 36. Let 𝐷 be a finite subset of points in 𝑃 . Then, there exists an optimal solution for 𝐴𝐺𝑃𝑊 (𝐷) where
each guard belongs to a AVP of 𝐴𝑟𝑟 (𝐷).

This theorem implies that we can obtain an optimal solution for 𝐴𝐺𝑃𝑊 (𝐷) by solving 𝐴𝐺𝑃𝑊 𝐹𝐶 (𝐷,𝑉 (𝐷)).
This problem, as mentioned earlier can be cast as 𝑆𝐶𝑃 . Another important part is, as 𝐷 is a subset of 𝑃 , the answer
is a lower bound for AGP. The second theorem says :

Theorem 37. Let 𝐷 and 𝐶 be two finite subsets of 𝑃 , so that 𝐶 covers 𝑃 . Assume that 𝐺 (𝐷,𝐶) is an optimal
solution for 𝐴𝐺𝑃𝑊 𝐹𝐶 (𝐷,𝐶) and let 𝑧 (𝐷,𝐶) = |𝐺 (𝐷,𝐶) |. If 𝐺 (𝐷,𝐶) covers 𝑃 , then 𝐺 (𝐷,𝐶) is also an optimal
solution for 𝐴𝐺𝑃𝐹𝐶 (𝐶).

We now briefly describe the algorithm. We initialize 𝐷 to some set (the set of all vertices𝑉 works too. Strategies
to construct the initial witness set has been experimented by the authors.) We initialize the lower bound 𝐿𝐵 to 0,
upper bound 𝑈𝐵 to 𝑛 and 𝐺∗, the current known optimal guard set to 𝑉 . Then, we iteratively solve 𝐴𝐺𝑃𝑊 (𝐷)
(Using Theorem 36). It also gives us a new potential lower bound. We prepare the witness sets and candidate
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guard sets to obtain a new upper bound according to Theorem 37. We refer the readers to the original paper for
more details of the algorithm, along with implementation details and computational experiments.

7.2 A Near-Minimal Witness Set [AÜ16]
Another interesting approach to look at the art gallery problem is to shrink the set of points required to be
guarded (which is the entire polygon in the classical case) to a smaller subset of points. This set of points is called
Witness Set of the polygon. A witness set𝑊 of a polygon 𝑃 is defined as a set such that every set 𝐺 guarding𝑊
also guards 𝑃 . More formally :

Definition 25 (Witness Set). A finite set𝑊 ⊆ 𝑃 is a Witness Set of 𝑃 if for any set of point guards 𝐺 in 𝑃 ,
𝑊 ⊆ ∪𝑔∈𝐺𝑉𝑃 (𝑔) implies ∪𝑔∈𝐺𝑉𝑃 (𝑔) = 𝑃 , where𝑉𝑃 (𝑣) is the visibility polygon of point 𝑣 i.e. the set of points visible
to 𝑣 .

There has been extensive research in this direction. We present recent results by Ayaz et al. who proposed an
𝑂 (𝑛4) runtime algorithm for finding a near-minimal witness set for a simple polygon.

Fig. 21. Polygon with guard placemet guarding the boundary but not the entire area as the shaded triangle formed in the
middle is not visible to these guards.

A question arises naturally whether guarding the boundary of polygon (denoted as 𝛿𝑃 ) suffices to guard
the whole polygon. Unfortunately the statement turns out to be false, a possible counterexample (as shown in
Figure 21) of a polygon and a placement of guards such that the boundary is guarded but some area of polygon is
left unguarded. Extending the concept of guarding the boundary first and then guarding interior was employed by
Ayaz et al. to compute a minimal witness set. Intuitively the algorithm classifies points accordingly on the basis of
visibility and placement of the polygon and then computes boundary-minimal witness set and interior-minimal
witness set for the polygon.

More formally, aminimal witness set𝑊𝑚𝑖𝑛 for polygon 𝑃 is a witness set such that there exists no proper subset
of𝑊𝑚𝑖𝑛 that witnesses 𝑃 . A polygon 𝑃 is called minimalizable polygon if there exists a minimal witness set for it.
Otherwise, 𝑃 is called a non-minimalizable polygon. A near-minimal witness set is defined as follows:

Definition 26 (Near-MinimalWitness Set). Awitness set𝑊 for a non-minimalizable polygon 𝑃 is called near-
minimal if it can be divided into two disjoint sets,𝑊𝑚𝑖𝑛 and𝑊𝜀 such that𝑊𝜀 consist of finitely many infinitesimally
short line segment and removal of any element from𝑊𝑚𝑖𝑛 or𝑊𝜀 makes𝑊 to violate the witnessing condition of𝑊 .

We call each element of𝑊𝜀 as an 𝜀 −𝑤𝑖𝑡𝑛𝑒𝑠𝑠
From Figure 22 it is evident that not all polygons admit a finite witness set of points. Thus the𝑂 (𝑛4) algorithm

computes witness sets of points, line segments and, if necessary, regions. And if the polygon has at least one
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(a) A polygon wuth a minimal witness set
of points and segments.

𝑣 𝑣𝜀

(b) Polygon with no minimal witness set but a
near-minimal one, as it is necessary to include
®𝑣𝑣+𝜀 .

Fig. 22. Polygons admitting no witness set of points

minimal witness set then the algorithm returns one such minimal witness set, else it returns a near-minimal
witness set.

A point 𝑝 is said to see past left of a reflex vertex 𝑣 if the exterior of the polygon is on the left side of vector ®𝑝𝑣
in the immediate neighbourhood of v (as shown in Figure 23). Analogous to this, we define 𝑝 seeing past right of
𝑣 . We say 𝑝 sees past 𝑣 if either 𝑝 sees past left or right of 𝑣 . We define Cross Line between two reflex vertices as
line segment between a pair of reflex vertices that see past each other. Visibility Kernel 𝑉𝐾 (𝑝) is defined as the
set of points that can see every point in visibility polygon of point 𝑝 i.e. 𝑉𝑃 (𝑝). This definition can be extended
to sets, i.e., given set of points 𝑆 , 𝑉𝐾 (𝑆) = ∪𝑝∈𝑆𝑉𝐾 (𝑝).

𝑝1

𝑣1

𝑣2
𝑝2

𝑣3

𝑝3

Fig. 23. Partition of a polygon boundary and inducing line segments and their extensions. 𝑝1 sees past right 𝑣1 and 𝑝2 sees
past left of 𝑣1. 𝑣1 𝑖𝑠 𝑜 𝑓 𝑇𝑦𝑝𝑒 1, 𝑝3 𝑖𝑠 𝑜 𝑓 𝑇𝑦𝑝𝑒 2 and 𝑝1 𝑖𝑠 𝑜 𝑓 𝑇𝑦𝑝𝑒 3 anchor points. The line segment ®𝑣1𝑣3 is a cross line.

Firstly, points are classified with various labels. Anchor points are the points that subdivide the boundary of
the input polygon. More formally, Anchor points include :(1) The vertices of the polygon, (2) For each reflex
vertex, the boundary points where the extension of each of the two edges incident to it hit first, (3) For every pair
of reflex vertices that see past each other, the boundary points where the two extensions of the line segment
between them hit first (See Figure 23). Anchor Edge is defined as a line segment joining two consecutive anchor
points. A point is labelled as an Ordinary Point iff 𝑝 ∈ 𝑃 \𝑉𝐾 (𝛿𝑃) and 𝑝 does not lie on a cross line. Points are
further classified in five types according to the vertices they see past left and/or right. For the sake of simplicity
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we just mention the types Type Z, Type L, Type R, Type D, Type N and refer the reader to the main paper [AÜ16]
for further in depth information.
We now highlight some of the results that serve as building blocks for the main algorithm.

Lemma 10. [AÜ16] Every point on an anchor edge sees past left and right the same set of reflex vertices (due to
Type 2 anchor points). Also these points (partially) sees the same set of edges (due to Type 3 anchor points). Moreover
the leftmost and the rightmost reflex vertices a point sees past is the same for all points within an anchor edge.

Lemma 11. [AÜ16] An ordinary point 𝑝 can only witness itself, i.e.,𝑉𝐾 (𝑝) = {𝑝}. Moreover 𝑝 is present in every
witness set of 𝑃 .

Lemma 12. [AÜ16] Let 𝑝 and 𝑞 be distinct points. If 𝑉𝐾 (𝑝) ⊂ 𝑉𝐾 (𝑞), then 𝑝 cannot be in any minimal witness
set.

Lemma 13. [AÜ16] If a point 𝑝 is in 𝑉𝐾 (𝛿𝑃) \ 𝛿𝑃 then 𝑝 cannot be in any minimal witness set.

Lemma 14. [AÜ16] If a point 𝑝 on 𝛿𝑃 is not witnessed by another point on 𝛿𝑃 , then 𝑝 has to be in every minimal
witness set.

Lemma 15. [AÜ16] A minimal witness set consist of a set of boundary elements, all ordinary points, and at least
one point on each cross line that is in 𝑃 \𝑉𝐾 (𝛿𝑃).
We now define the processing in the main algorithm briefly. As discussed earlier, in the first step all anchor

points and the corresponding edges are searched by using a standard linear time visibility algorithm on each
vertex. The next steps compute a set formed by subdivision of the polygon based on an arrangement of three
types of line segments (described in the main paper). The next step computes elements of a near-minimal witness
set on the boundary i.e. 𝛿𝑃 followed by finding the cells of a near-minimal witness set in the interior of polygon
P (interior is all points in 𝑃 \ 𝛿𝑃 ).
The returned set𝑊 is minimal if it contains no 𝜀 − 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 element. Otherwise, it returns𝑊 which is a

near-minimal solution to the non-minimizable polygon.

8 CONCLUSION AND FUTURE DIRECTION
AGP is one of the most studied problem in computational geometry. We attempted to cover the key results of the
problem considering the major variants w.r.t the guard set as well as the type of polygon. During the study we
encountered some problems which are potentially open for AGP and a few possible extensions from the work we
mentioned. These are summarized as follows:
(1) Bounding the number of variables which are sufficient as well as necessary to for encoding AGP, say a

bound of 𝜔 (𝑘) variables.
(2) Super-constant inapproximability or improved approximation algorithms.
(3) 𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 )-approximation algorithm running in polynomial time for polygon with holes.
(4) FPT w.r.t number of reflex vertices for Vertex-Point (VG) or Point-Vertex (PVG) variants of AGP still remain

as open problems.
(5) Prove that Lemma 3 could be established without Assumption 2 thereby giving 𝑂 (𝑙𝑜𝑔𝑂𝑃𝑇 )-approximation

without Assumption 2.
(6) The approach used in section Section 6.2 can be proven fruitful to resolve the parameterized complexity

of other problems of discrete geometric flavour. The problem still open with respect to parameterized
algorithms for parameters like Tree Width, Clique Width etc.

(7) Determining a tight bound for vertex in classical art gallery with holes (as mentioned in Section 4.1.1).
Rourke’s result is a loose upper bound, while Shermer’s conjecture is still open for general number of
vertices and holes.
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(8) Proving the 4 : 3 ratio between the extreme number of points and mobile guards for art galleries provided
by both simple polygons and simple orthogonal polygons.
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